Thermal Properties of Poly(3-(2′-Ethyl)Hexylthiophene): Study with a Real-Time Combination of Synchrotron X-Ray Scattering and Ultrafast Chip Calorimetry

Article Preview

Abstract:

Here we report on reorganization on heating of a perspective organic semiconductor poly(3-(2′-ethyl)hexylthiophene) (P3EHT). P3EHT is an analogue of a well-known poly(3-hexylthiophene) (P3HT), which has comparable optoelectronic properties and the advantage of a lower processing temperature. The processes of structural reorganization during heating of P3EHT have been explored with a combination of synchrotron X-ray scattering and ultrafast chip calorimetry. The signature of reorganization has been identified from an increase of d-spacing of 100 peak of the P3EHT unit cell. It was observed that reorganization operates during heating of P3EHT at conventional rates of a DSC experiment (i.e., at 10 deg/min), whereas it is largely suppressed at a heating rate of 100 deg/s. Despite the absence of reorganization at high heating rates the calorimetric curves exhibit pronounced double melting, which corroborates the model of the negative pressure building up during crystallization of semi-rigid chain polymers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

375-381

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C. Thompson, J.M. Frechet, Polymer-fullerene composite solar cells, J. Angew. Chem. Int. Ed. 47 (2008) 58-77.

DOI: 10.1002/anie.200702506

Google Scholar

[2] H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature. 401 (1999) 685-688.

DOI: 10.1038/44359

Google Scholar

[3] B.W. Boudouris, V. Ho, L.H. Jimison, M.F. Toney, A. Salleo, R.A. Segalman, Real-Time Observation of Poly(3-alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties, Macromolecules. 44 (2011) 6653-6658.

DOI: 10.1021/ma201316a

Google Scholar

[4] B.S. Beckingham, V. Ho, R.A. Segalman, Melting Behavior of Poly(3-(2'-ethyl)hexylthiophene), Macromolecules. 47 (2014) 8305-8310.

DOI: 10.1021/ma501915v

Google Scholar

[5] M.Sh. Yagfarov, E.P. Mitrofanova, Recrystallization and secondary crystallization in polymers, Polymer Science USSR. 28 (1986) 1011-1017.

DOI: 10.1016/0032-3950(86)90246-7

Google Scholar

[6] Y. Lee, R.S. Porter, Double-melting behavior of poly(ether ether ketone), Macromolecules. 20 (1987) 1336-1341.

DOI: 10.1021/ma00172a028

Google Scholar

[7] D.A. Ivanov, A.M. Jonas, Isothermal growth and reorganization upon heating of a single poly(aryl-ether-ether-ketone) (PEEK) spherulite, as imaged by atomic force microscopy, Macromolecules. 31 (1998) 4546-4550.

DOI: 10.1021/ma961549e

Google Scholar

[8] D.A. Ivanov, A.M. Jonas, R. Legras, The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Reorganization processes during gradual reheating of cold-crystallized samples, Polymer. 41 (2000) 3719-3727.

DOI: 10.1016/s0032-3861(99)00549-2

Google Scholar

[9] A.P. Melnikov, M. Rosenthal, A. Rodygin, D. Doblas, D. Anokhin, M. Burghammer, D.A. Ivanov, Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry, Eur. Polym. J. 81 (2016) 598-606.

DOI: 10.1016/j.eurpolymj.2015.12.031

Google Scholar

[10] A.P. Melnikov, M. Rosenthal, D.A. Ivanov, What Thermal Analysis Can Tell Us about Melting of Semicrystalline Polymers: Exploring the General Validity of the Technique, ACS Macro Lett. 7 (2018) 1426-1431.

DOI: 10.1021/acsmacrolett.8b00754

Google Scholar

[11] N. Piazzon, M. Rosenthal, A. Bondar, D. Spitzer, D.A. Ivanov, Characterization of explosives traces by the Nanocalorimetry. J. Phys. Chem. Solids. 71 (2010) 114-118.

DOI: 10.1016/j.jpcs.2009.07.032

Google Scholar

[12] M. Rosenthal, A.P. Melnikov, A.A. Rychkov, D. Doblas, D. Anokhin, M. Burghammer, D.A. Ivanov, Design of an In Situ Setup Combining Nanocalorimetry and Nano- or Micro-focus X-Ray Scattering to Address Fast Structure Formation Processes, Fast Scanning Calorimetry, Chapter 9, Springer (2016).

DOI: 10.1007/978-3-319-31329-0_9

Google Scholar

[13] A.A. Rychkov, A.P. Melnikov, A.I. Rodygin, D.V. Anokhin, M. Rosenthal, D.A. Ivanov Ultra-fast chip calorimetry accessories for in operando structural studies of nanogram-sized samples, IOP Conf. Ser.: Mat. Sci. and Eng. 525 (2019).

DOI: 10.1088/1757-899x/525/1/012047

Google Scholar

[14] B.S. Beckingham, V. Ho, R.A. Segalman, Formation of a Rigid Amorphous Fraction in Poly(3-(2'ethyl)hexylthiophene), ACS Macro Lett. 3 (2014) 684-688.

DOI: 10.1021/mz500262d

Google Scholar

[15] H. Chena, C. Sua, G. Shia, G. Liua, D. Wang, Nature of the double melting peaks of regioregular poly(3-dodecylthiophene), European Polymer Journal. 99 (2018) 284-288.

DOI: 10.1016/j.eurpolymj.2017.12.031

Google Scholar

[16] D.A. Ivanov, G. Bar, M. Dosière, M.H.J. Koch, A Novel View on Crystallization and Melting of Semirigid Chain Polymers: The Case of Poly(trimethylene terephthalate), Macromolecules. 41 (2008) 9224-9231.

DOI: 10.1021/ma801604a

Google Scholar