Fabrication and Investigation on the Polyimide/Al2O3 Composite Films via Ion Exchange Technology

Article Preview

Abstract:

Polyimide/Al2O3 films were prepared by the surface modification with different hydrolysis time, ion exchange technique and heat treatment using polyimide films as the substrates and aluminum chloride as the precursor of Al2O3. The morphology, thermal properties and electrical properties of the composite films were characterized and tested. The results indicated the alumina distributed in certain thickness on the surface of the films and there was a clear interface layer between the alumina layer and the substrate. The breakdown strength of the composite films maintains the excellent properties of the pristine film while the thermal and corona-resistant time properties of composite films were better than the pristine film due to introducing aluminum oxide. The composite film which used KOH to treat for 90 min has the longest corona-resistant time (101.2 min), which was almost 10 times longer than the pristine film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-270

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qi, S.L., et al., Double-surface-silvered polyimide films prepared via a direct ion-exchange self-metallization process. Chemistry of Materials, 2007. 19(3): pp.393-401.

DOI: 10.1021/cm062016f

Google Scholar

[2] Bu, W.B., et al., Effect of corona ageing on the structure changes of polyimide and polyimide/Al2O3 nanocomposite films. Journal of Electrostatics, 2011. 69(3): pp.141-145.

DOI: 10.1016/j.elstat.2011.03.001

Google Scholar

[3] Mu, S., et al., Fabrication of nickel oxide nanocomposite layer on a flexible polyimide substrate via ion exchange technique. ACS applied materials & interfaces, 2009. 2(1): pp.111-118.

DOI: 10.1021/am900620u

Google Scholar

[4] Liu, L., et al., Effects of coupling agents on structure and properties of polyimide/Al2O3 nanocomposite films. Pigment & Resin Technology, 2011. 40(4): pp.222-228.

DOI: 10.1108/03699421111147281

Google Scholar

[5] Rahman, M., et al., Nanosized nickel oxide particles and modification with poly (methyl methacrylate). Polymers for Advanced Technologies, 2012. 23(8): pp.1187-1193.

DOI: 10.1002/pat.2026

Google Scholar

[6] Ma, P.C., et al., Preparation and characterization of polyimide/Al2O3 hybrid films by sol-gel process. Journal of Applied Polymer Science, 2008. 108(2): pp.705-712.

DOI: 10.1002/app.27540

Google Scholar

[7] Liu, X.X., et al., The property and microstructure study of polyimide/nano-TiO2 hybrid films with sandwich structures. Thin Solid Films, 2013. 544: pp.54-58.

DOI: 10.1016/j.tsf.2013.04.130

Google Scholar

[8] He, Q., et al., Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@ FeO core-shell nanoparticles. Polymer, 2012. 53(16): pp.3642-3652.

DOI: 10.1016/j.polymer.2012.06.010

Google Scholar

[9] Chen, M.H., et al., Microstructure changes of polyimide/MMT-AlN composite hybrid films under corona aging. Applied Surface Science, 2012. 263: pp.302-306.

DOI: 10.1016/j.apsusc.2012.09.048

Google Scholar

[10] Zha, J., et al., The influence of TiO2 nanoparticle incorporation on surface potential decay of corona-resistant polyimide nanocomposite films. Journal of Electrostatics, 2011. 69(25): p. 5e260.

DOI: 10.1016/j.elstat.2011.04.001

Google Scholar

[11] Liu, L., et al., The effects of coupling agents on the properties of polyimide/nano-Al 2 O 3 three-layer hybrid films. Journal of Nanomaterials, 2010. 2010: p.8.

Google Scholar

[12] Weng, L., et al., Preparation, Morphology and Properties of Nano-silica-alumina Co-doped Polyimide Three-layer Composite Films. Polymers & Polymer Composites, 2011. 19(2-3): pp.189-195.

DOI: 10.1177/0967391111019002-321

Google Scholar

[13] Zhang, M.Y., et al., Fabrication and Properties of Polyimide Film with Aluminum Oxide composite layer via ion exchange technique. Journal of Functional Materials, 2013. 5: pp.740-743.

Google Scholar

[14] Zhou, H.R., et al., Synthesis and characterisation of nano-alumina hybrid polyimide films. Pigment & Resin Technology, 2008. 37(3): pp.161-166.

DOI: 10.1108/03699420810871002

Google Scholar

[15] Han, Z.Q., et al., Surface-Modified Polyimide Fiber-Filled Ethylenepropylenediene Monomer Insulations for a Solid Rocket Motor: Processing, Morphology, and Properties. Industrial & Engineering Chemistry Research, 2013. 52(3): pp.1284-1290.

DOI: 10.1021/ie302274e

Google Scholar

[16] Ding, Q., Y.-E. Miao, and T. Liu, Morphology and Photocatalytic Property of Hierarchical Polyimide/ZnO Fibers Prepared via a Direct Ion-exchange Process. ACS applied materials & interfaces, 2013. 5(12): pp.5617-5622.

DOI: 10.1021/am4009488

Google Scholar

[17] Zhan, J., et al., Fabrication and mechanism study of CuO layers on double surfaces of polyimide substrate using surface modification. Composites Science and Technology, 2012. 72(9): pp.1020-1026.

DOI: 10.1016/j.compscitech.2012.03.014

Google Scholar

[18] Stephans, L.E., A. Myles, and R.R. Thomas, Kinetics of Alkaline Hydrolysis of a Polyimide Surface. Langmuir, 2000. 16(10): pp.4706-4710.

DOI: 10.1021/la991105m

Google Scholar

[19] Lin, Z.W., S.L. Qi, and D.Z. Wu, Formation of double-surface-silvered polyimide films via a direct ion-exchange self-metallization technique: The case of BPADA/ODA and Ag(NH3)(2) (+). Journal of Applied Polymer Science, 2012. 125(5): pp.3552-3559.

DOI: 10.1002/app.36240

Google Scholar

[20] Mu, S.X., et al., Formation and characterization of cobalt oxide layers on polyimide films via surface modification and ion-exchange technique. Thin Solid Films, 2010. 518(15): pp.4175-4182.

DOI: 10.1016/j.tsf.2009.12.004

Google Scholar

[21] Han, E.L., et al., Incorporation of Silver Nanoparticles into the Bulk of the Electrospun Ultrafine Polyimide Nanofibers via a Direct Ion Exchange Self-Metallization Process. Acs Applied Materials & Interfaces, 2012. 4(5): pp.2583-2590.

DOI: 10.1021/am300248c

Google Scholar

[22] Qi, S.L., et al., Direct ion exchange self-metallization: A novel and efficient route for the preparation of double-surface-silvered polyimide films. Macromolecular Rapid Communications, 2006. 27(5): pp.372-376.

DOI: 10.1002/marc.200500733

Google Scholar

[23] Qi, S.L., et al., Controlled formation of optically reflective and electrically conductive silvered surfaces on polyimide film via a direct ion-exchange self-metallization technique using silver ammonia complex cation as the precursor. Journal of Physical Chemistry B, 2008. 112(18): pp.5575-5584.

DOI: 10.1021/jp711373p

Google Scholar

[24] Akamatsu, K., et al., Fabrication of Silver Patterns on Polyimide Films Based on Solid-Phase Electrochemical Constructive Lithography Using Ion-Exchangeable Precursor Layers. Langmuir, 2011. 27(19): pp.11761-11766.

DOI: 10.1021/la2025318

Google Scholar

[25] Akamatsu, K., S. Ikeda, and H. Nawafune, Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers. Langmuir, 2003. 19(24): pp.10366-10371.

DOI: 10.1021/la034888r

Google Scholar

[26] Han, E.L., et al., Consecutive Large-Scale Fabrication of Surface-Silvered Polyimide Fibers via an Integrated Direct Ion-Exchange Self-Metallization Strategy. Acs Applied Materials & Interfaces, 2013. 5(10): pp.4293-4301.

DOI: 10.1021/am4005094

Google Scholar

[27] Qi, S.L., et al., Highly reflective and conductive double-surface-silvered polyimide films prepared from silver fluoride and BTDA/4,4 '-ODA. Langmuir, 2007. 23(9): pp.4878-4885.

DOI: 10.1021/la062948y

Google Scholar

[28] Mu, S.X., et al., Preparation of Polyimide/Zinc Oxide Nanocomposite Films via an Ion-Exchange Technique and Their Photoluminescence Properties. Journal of Nanomaterials, (2011).

DOI: 10.1155/2011/950832

Google Scholar

[29] Akamatsu, K., et al., Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers:  Monodispersed Copper Nanoparticles in Polyimide Resins. Chemistry of Materials, 2003. 15(13): pp.2488-2491.

DOI: 10.1021/cm034019n

Google Scholar

[30] Mu, S.X., et al., Fabrication of Nickel Oxide Nanocomposite Layer on a Flexible Polyimide Substrate via Ion Exchange Technique. Acs Applied Materials & Interfaces, 2010. 2(1): pp.111-118.

DOI: 10.1021/am900620u

Google Scholar

[31] Cui, G., et al., Preparation SnO2 nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process. ACS applied materials & interfaces, 2011. 3(3): pp.789-794.

DOI: 10.1021/am1011468

Google Scholar