[1]
Qi, S.L., et al., Double-surface-silvered polyimide films prepared via a direct ion-exchange self-metallization process. Chemistry of Materials, 2007. 19(3): pp.393-401.
DOI: 10.1021/cm062016f
Google Scholar
[2]
Bu, W.B., et al., Effect of corona ageing on the structure changes of polyimide and polyimide/Al2O3 nanocomposite films. Journal of Electrostatics, 2011. 69(3): pp.141-145.
DOI: 10.1016/j.elstat.2011.03.001
Google Scholar
[3]
Mu, S., et al., Fabrication of nickel oxide nanocomposite layer on a flexible polyimide substrate via ion exchange technique. ACS applied materials & interfaces, 2009. 2(1): pp.111-118.
DOI: 10.1021/am900620u
Google Scholar
[4]
Liu, L., et al., Effects of coupling agents on structure and properties of polyimide/Al2O3 nanocomposite films. Pigment & Resin Technology, 2011. 40(4): pp.222-228.
DOI: 10.1108/03699421111147281
Google Scholar
[5]
Rahman, M., et al., Nanosized nickel oxide particles and modification with poly (methyl methacrylate). Polymers for Advanced Technologies, 2012. 23(8): pp.1187-1193.
DOI: 10.1002/pat.2026
Google Scholar
[6]
Ma, P.C., et al., Preparation and characterization of polyimide/Al2O3 hybrid films by sol-gel process. Journal of Applied Polymer Science, 2008. 108(2): pp.705-712.
DOI: 10.1002/app.27540
Google Scholar
[7]
Liu, X.X., et al., The property and microstructure study of polyimide/nano-TiO2 hybrid films with sandwich structures. Thin Solid Films, 2013. 544: pp.54-58.
DOI: 10.1016/j.tsf.2013.04.130
Google Scholar
[8]
He, Q., et al., Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@ FeO core-shell nanoparticles. Polymer, 2012. 53(16): pp.3642-3652.
DOI: 10.1016/j.polymer.2012.06.010
Google Scholar
[9]
Chen, M.H., et al., Microstructure changes of polyimide/MMT-AlN composite hybrid films under corona aging. Applied Surface Science, 2012. 263: pp.302-306.
DOI: 10.1016/j.apsusc.2012.09.048
Google Scholar
[10]
Zha, J., et al., The influence of TiO2 nanoparticle incorporation on surface potential decay of corona-resistant polyimide nanocomposite films. Journal of Electrostatics, 2011. 69(25): p. 5e260.
DOI: 10.1016/j.elstat.2011.04.001
Google Scholar
[11]
Liu, L., et al., The effects of coupling agents on the properties of polyimide/nano-Al 2 O 3 three-layer hybrid films. Journal of Nanomaterials, 2010. 2010: p.8.
Google Scholar
[12]
Weng, L., et al., Preparation, Morphology and Properties of Nano-silica-alumina Co-doped Polyimide Three-layer Composite Films. Polymers & Polymer Composites, 2011. 19(2-3): pp.189-195.
DOI: 10.1177/0967391111019002-321
Google Scholar
[13]
Zhang, M.Y., et al., Fabrication and Properties of Polyimide Film with Aluminum Oxide composite layer via ion exchange technique. Journal of Functional Materials, 2013. 5: pp.740-743.
Google Scholar
[14]
Zhou, H.R., et al., Synthesis and characterisation of nano-alumina hybrid polyimide films. Pigment & Resin Technology, 2008. 37(3): pp.161-166.
DOI: 10.1108/03699420810871002
Google Scholar
[15]
Han, Z.Q., et al., Surface-Modified Polyimide Fiber-Filled Ethylenepropylenediene Monomer Insulations for a Solid Rocket Motor: Processing, Morphology, and Properties. Industrial & Engineering Chemistry Research, 2013. 52(3): pp.1284-1290.
DOI: 10.1021/ie302274e
Google Scholar
[16]
Ding, Q., Y.-E. Miao, and T. Liu, Morphology and Photocatalytic Property of Hierarchical Polyimide/ZnO Fibers Prepared via a Direct Ion-exchange Process. ACS applied materials & interfaces, 2013. 5(12): pp.5617-5622.
DOI: 10.1021/am4009488
Google Scholar
[17]
Zhan, J., et al., Fabrication and mechanism study of CuO layers on double surfaces of polyimide substrate using surface modification. Composites Science and Technology, 2012. 72(9): pp.1020-1026.
DOI: 10.1016/j.compscitech.2012.03.014
Google Scholar
[18]
Stephans, L.E., A. Myles, and R.R. Thomas, Kinetics of Alkaline Hydrolysis of a Polyimide Surface. Langmuir, 2000. 16(10): pp.4706-4710.
DOI: 10.1021/la991105m
Google Scholar
[19]
Lin, Z.W., S.L. Qi, and D.Z. Wu, Formation of double-surface-silvered polyimide films via a direct ion-exchange self-metallization technique: The case of BPADA/ODA and Ag(NH3)(2) (+). Journal of Applied Polymer Science, 2012. 125(5): pp.3552-3559.
DOI: 10.1002/app.36240
Google Scholar
[20]
Mu, S.X., et al., Formation and characterization of cobalt oxide layers on polyimide films via surface modification and ion-exchange technique. Thin Solid Films, 2010. 518(15): pp.4175-4182.
DOI: 10.1016/j.tsf.2009.12.004
Google Scholar
[21]
Han, E.L., et al., Incorporation of Silver Nanoparticles into the Bulk of the Electrospun Ultrafine Polyimide Nanofibers via a Direct Ion Exchange Self-Metallization Process. Acs Applied Materials & Interfaces, 2012. 4(5): pp.2583-2590.
DOI: 10.1021/am300248c
Google Scholar
[22]
Qi, S.L., et al., Direct ion exchange self-metallization: A novel and efficient route for the preparation of double-surface-silvered polyimide films. Macromolecular Rapid Communications, 2006. 27(5): pp.372-376.
DOI: 10.1002/marc.200500733
Google Scholar
[23]
Qi, S.L., et al., Controlled formation of optically reflective and electrically conductive silvered surfaces on polyimide film via a direct ion-exchange self-metallization technique using silver ammonia complex cation as the precursor. Journal of Physical Chemistry B, 2008. 112(18): pp.5575-5584.
DOI: 10.1021/jp711373p
Google Scholar
[24]
Akamatsu, K., et al., Fabrication of Silver Patterns on Polyimide Films Based on Solid-Phase Electrochemical Constructive Lithography Using Ion-Exchangeable Precursor Layers. Langmuir, 2011. 27(19): pp.11761-11766.
DOI: 10.1021/la2025318
Google Scholar
[25]
Akamatsu, K., S. Ikeda, and H. Nawafune, Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers. Langmuir, 2003. 19(24): pp.10366-10371.
DOI: 10.1021/la034888r
Google Scholar
[26]
Han, E.L., et al., Consecutive Large-Scale Fabrication of Surface-Silvered Polyimide Fibers via an Integrated Direct Ion-Exchange Self-Metallization Strategy. Acs Applied Materials & Interfaces, 2013. 5(10): pp.4293-4301.
DOI: 10.1021/am4005094
Google Scholar
[27]
Qi, S.L., et al., Highly reflective and conductive double-surface-silvered polyimide films prepared from silver fluoride and BTDA/4,4 '-ODA. Langmuir, 2007. 23(9): pp.4878-4885.
DOI: 10.1021/la062948y
Google Scholar
[28]
Mu, S.X., et al., Preparation of Polyimide/Zinc Oxide Nanocomposite Films via an Ion-Exchange Technique and Their Photoluminescence Properties. Journal of Nanomaterials, (2011).
DOI: 10.1155/2011/950832
Google Scholar
[29]
Akamatsu, K., et al., Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers: Monodispersed Copper Nanoparticles in Polyimide Resins. Chemistry of Materials, 2003. 15(13): pp.2488-2491.
DOI: 10.1021/cm034019n
Google Scholar
[30]
Mu, S.X., et al., Fabrication of Nickel Oxide Nanocomposite Layer on a Flexible Polyimide Substrate via Ion Exchange Technique. Acs Applied Materials & Interfaces, 2010. 2(1): pp.111-118.
DOI: 10.1021/am900620u
Google Scholar
[31]
Cui, G., et al., Preparation SnO2 nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process. ACS applied materials & interfaces, 2011. 3(3): pp.789-794.
DOI: 10.1021/am1011468
Google Scholar