Identifying the Weight of Factors Affecting Creep of Concrete Using Factorial ANOVA

Article Preview

Abstract:

Creep may affect structural behavior by violating service limit states, redistributing stress or losing prestress forces. For that, knowing the significance of factors that influence creep is a must to accurately predict it. This paper uses the Northwestern university (NU) database to investigate the factors that most affect long-term creep of concrete. Factorial ANOVA was applied to identify the significance of factors affecting creep of concrete at 3000 days using R software. The factorial ANOVA results showed that the sustained load and the relative humidity have the major effect on the value of concrete creep at 3000 days.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-25

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Adam, R. Taha, Identifying the significance of factors affecting creep: a probabilistic analysis of RILEM database, Int. J. Concr. Struct. Mater. 5(2) (2011) 97-111.

DOI: 10.4334/ijcsm.2011.5.2.97

Google Scholar

[2] L. Yanying, Z. Yongsheng, An analysis of temperature stress and deforming considering shrinkage and creep in super-long frame structure, Key Eng. Mater. 326-328 (2006) 1467-1470.

DOI: 10.4028/www.scientific.net/kem.326-328.1467

Google Scholar

[3] ACI Committee 209-Creep and volume changes in concrete, Prediction of creep, shrinkage, and temperature effects in concrete structures, American Concrete Institute.

DOI: 10.14359/1256

Google Scholar

[4] Z. P. Bazant, S. Baweja, Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3, ACI Special Publications, (2000) 1-84.

Google Scholar

[5] F. I. Du Beton, Structural concrete. Textbook on behavior, design and performance-updated knowledge of the CEB/FIP model code 1999, vol 1-3, Federation Internationale du Beton (FIB), Lausanne, Switzerland, (1990).

DOI: 10.35789/fib.bull.0003

Google Scholar

[6] N.J. Gardner, Design provisions for shrinkage and creep of concrete, In Adam Neville Symposium: Creep and Shrinkage-Structural Design Effects, American Concrete Institue, (2000).

DOI: 10.14359/9891

Google Scholar

[7] H. Cagnon, T. Vidal, A. Sellier, J. M. Torrenti, Transient thermal creep at moderate temperature, Key Eng. Mater. 711 (2016) 885-891.

DOI: 10.4028/www.scientific.net/kem.711.885

Google Scholar

[8] J. S. Mun, K. H. Yang, S. J. Kim, Long-term behavior of low-heat cement concrete under different curing temperatures, Key Eng. Mater. 723 (2017) 819-823.

DOI: 10.4028/www.scientific.net/kem.723.819

Google Scholar

[9] K. Tvrda, J. Drienovska, Analysis of creep effects in a concrete beam using various software, Key Eng. Mater. 738 (2017) 79-88.

DOI: 10.4028/www.scientific.net/kem.738.79

Google Scholar

[10] P. Wang, F. H. Wittmann, W. Lu, T. Zhao, Influence of sustained load on durability and service life of reinforced concrete structures, Key Eng. Mater. 711 (2016) 638-644.

DOI: 10.4028/www.scientific.net/kem.711.638

Google Scholar

[11] W. Lin, J. LIU, Influence of reinforcement placement on the creep of concrete, Key. Eng. Mater. 629-630 (2015) 130-135.

DOI: 10.4028/www.scientific.net/kem.629-630.130

Google Scholar

[12] J. Xiao, H. Li, The state-of-the-art on long-term property of recycled aggregate concrete, Key Eng. Mater. 517 (2012) 522-527.

DOI: 10.4028/www.scientific.net/kem.517.522

Google Scholar

[13] M. Mazloom, A. A. Ramezanianpour, J. J. Brooks, Effect of silica fume on mechanical properties of high-strength concrete, Cement Concrete Comp. 26(4) (2004) 347-357.

DOI: 10.1016/s0958-9465(03)00017-9

Google Scholar

[14] S. S. Kristiawan, A. P. Nugroho, Creep behaviour of self-compacting concrete incorporating high volume fly ash and its effect on the long-term deflection of reinforced concrete beam, Procedia Eng. 171 (2017) 715-724.

DOI: 10.1016/j.proeng.2017.01.416

Google Scholar

[15] D. G. Herr, On the history of ANOVA in unbalanced, factorial designs: The first 30 years, The American Statistician, 40(4) (1986) 265-270.

DOI: 10.1080/00031305.1986.10475409

Google Scholar

[16] O. Langsrud, ANOVA for unbalanced data: use Type II instead of Type III sums of squares, Statistics and Computing, 13(2) (2003) 163-167.

Google Scholar

[17] X. Wang, Y. Zhang, Y. Tang, Feasible criterion for designs based on fixed effect ANOVA model, Stat. Probabil. Lett. 87 (2014) 134-142.

DOI: 10.1016/j.spl.2014.01.020

Google Scholar

[18] W. Cui, J. Huang, H. Song, M. Xiao, Development of two new anti-washout grouting materials using multi-way ANOVA in conjunction with grey relational analysis, Constr. Build. Mater. 156 (2017) 184-198.

DOI: 10.1016/j.conbuildmat.2017.08.126

Google Scholar