Investigation of a Steel Local Corrosion in Chloride-Containing Media

Article Preview

Abstract:

Aspects of the development of local corrosion on the metal surface under the influence of aggressive media containing chloride ions are presented. The main mechanisms leading to the formation and development of local damage of the surface of metals are described. The process of electrochemical corrosion of steel under the influence of chloride-containing medium is experimentally investigated. By constructing corrosion diagrams, the main indicators of steel corrosion in a 10% sodium chloride solution were determined, which allows one to judge the rate of development of corrosion processes with local damage to the protective coating and the degree of steel resistance depending on the aggressiveness of the medium. It is shown that protective coatings, such as modified phosphate and oxide-phosphate films, prevent the penetration of an aggressive medium to the surface of the protected metal and, accordingly, the anodic dissolution of the metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-13

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, R. B. Polder, Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, Bedin: Wiley-VCH, (2004).

DOI: 10.1002/9783527651696

Google Scholar

[2] I. G. Rodionova, O. N. Baklanova, A. I. Zaitsev, On the role of nonmetallic inclusions in the acceleration of local corrosion of oil-field pipelines made of carbon and low-alloy steels, Russian metallurgy (Metally), 5 (2004) 414-418.

Google Scholar

[3] I. I. Reformatskaya, A. N. Podobaev, I. G. Rodionova, Y. A. Bejlin, L. A. Nisel'son, I. R. Begishev, The role of microstructure of carbon and low alloy steels in process of their local corrosion, Corr. Mater. Protect. 3 (2005) 13-17.

Google Scholar

[4] H. H. Strehblow, Nucleation and repassivation of corrosion pits for pitting on iron and nickel, Mater. Corr., 27(11) (1976) 792-799.

DOI: 10.1002/maco.19760271106

Google Scholar

[5] G. S. Frankel, Pitting corrosion of metals a review of the critical factors, Journal of the Electrochem. Soc. 145(6) (1998) 2186-2198.

DOI: 10.1149/1.1838615

Google Scholar

[6] H. H. Strehblow, Pitting corrosion, Encyclopedia of Electrochemistry, Online (2007).

Google Scholar

[7] H. H. Strehblow, Mechanism of pitting corrosion, Corrosion Mechanisms in Theory and Practice, (1995) 201-238.

Google Scholar

[8] W. P. Yang, D. Costa, P. Marcus, Oxide Films on Metals and Alloys, Electrochem. Soc. 92-22 (1922) 516.

Google Scholar

[9] P. Marcus, J. M. Herbelin, The entry of chloride ions into passive films on nickel studied by spectroscopic (ESCA) and nuclear (36Cl radiotracer) methods, Corr. Sci. 34(7) (1993) 1123-1145.

DOI: 10.1016/0010-938x(93)90293-p

Google Scholar

[10] C. L. McBee, J. Kruger, Localized Corrosion, RW Staehle et al, (1974) 252.

Google Scholar

[11] W. Paatsch, Optische Untersuchungen zum Entstehungsmechanismus der Lochfraßkorrosion, Berichte der Bunsengesellschaft für physikalische Chemie, 77(10-11) (1973) 895-898.

DOI: 10.1002/bbpc.v77:10/11

Google Scholar

[12] D. R. Latypova, O. R. Latypov, D. E. Bugai, Influence of electrode potential on the depth of pitting corrosion in the surface structures of placed steel, Nanotechnol. Constr. 10(3) (2018) 167-178.

DOI: 10.15828/2075-8545-2018-10-3-167-178

Google Scholar

[13] M. A. Maleeva, M. A. Petrunin, L. B. Maksaeva, T. A. Yurasova, A. I. Marshakov, Local corrosion dissolution of steel in earth-simulating solutions, Protect. Metals Phys. Chem. Surf. 52(7) (2016) 1107-1113.

DOI: 10.1134/s2070205116070133

Google Scholar

[14] T. V. Svistunova, A. P. Shlyamnev, Steels with improved resistance to local kinds of corrosion, Corr. Mater. Protect. 2 (2006) 2-8.

Google Scholar

[15] M. Yasuda, T. Taga, Y. Ogata, T. Lida, F. Hine, Pitting corrosion behavior of stainless steels in NaCl solutions under heat transfer conditions, J. Soc. Mater. Sci. Jap. 35(396) (1986) 1049-1053.

DOI: 10.2472/jsms.35.1049

Google Scholar

[16] C. Lin, L. Xiaogang, C. Dong, Pitting and galvanic corrosion behavior of stainless steel with weld in wet-dry environment containing Cl−, J. Uni. Sci. Technol Beijing, Mineral, Metallurgy, Material, 14(6) (2007) 517-522.

DOI: 10.1016/s1005-8850(07)60120-0

Google Scholar

[17] V. Y. Rumyantseva, V. S. Konovalova, N. M. Vitalova, Corrosion inhibition of reinforced concrete structures, Constr. Reconstr. 4(54) (2014) 65-72.

Google Scholar

[18] S. V. Fedosov, V. Y. Rumyantseva, K. Y. Rumyantseva, V. S. Konovalova, M. E. Shesterkin, Features of cold bonderizing of reinforcing steel, Bulle. Civ. Eng. 2(31) (2012) 79-82.

Google Scholar

[19] V. E. Rumyantseva, V. S. Konovalova, I. N. Goglev, The effect of modified phosphate coatings on the corrosion resistance of steels, Materials of the International Conference, Scientific research of the SCO countries: synergy and integration, Rep. English Part 1, Beijing, PRC, 125-132.

Google Scholar

[20] S. V. Fedosov, V. E. Roumyantseva, V. S. Konovalova, Phosphate coatings as a way to protect steel reinforcement from corrosion, MATEC Web of Conf. 298 (2019) 00126.

DOI: 10.1051/matecconf/201929800126

Google Scholar