Protein Extraction from Spirulina platensis by Using Ultrasound Assisted Extraction: Effect of Solvent Types and Extraction Time

Article Preview

Abstract:

Protein is a substantial nutrition that essentially required by human. Spirulina platensis (Spp), well known as protein source could be a significant source to be used for many industrial applications. This study was investigated the effectiveness of ultrasound assisted extraction (UAE) method for protein extraction from Spp at various composition of solvent mixture and extraction time. Ethanol and mixture of methanol-ethanol were used as solvent. Extraction was conducted by varying ratios of solvent to biomass at 10:1, 12.5:1, and 15:1 (v/w), and extraction time (20, 35, and 50 min). Optimum protein recovery from dry Spp was 42.55 ± 0.43% obtained by using 20 ml of the mixture of methanol and ethanol at 50 min of extraction time. This study also conducted that mixture of methanol and ethanol was a better solvent on improving the ultrasound assisted extraction, as indicated by high protein recovery with less amount of solvent volume used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-37

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. C. J. Godfray, J. R. Beddington, et al., Food Security: The Challenge of Feeding 9 Billion People, Sci. 327(5967) (2010) 812-818.

DOI: 10.1126/science.1185383

Google Scholar

[2] S. Bleakley, M. Hayes, Algal Proteins: Extraction, Application, and Challenges Concerning Production, Foods, 6 (2017) 2-34.

DOI: 10.3390/foods6050033

Google Scholar

[3] S. Collins, N. Dent, P. Binns, P. Bahwere, K. Sadler, A. Hallam, Management of severe acute malnutrition in children., Lancet. 368 (2006) 1992-2000.

DOI: 10.1016/s0140-6736(06)69443-9

Google Scholar

[4] A. L. Lupatini, L. de Oliveira Bispo, L. M. Colla, J. A. V. Costa, C. Canan, E. Colla, Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation, Food Res. Int. 99 (2017) 1028-1035.

DOI: 10.1016/j.foodres.2016.11.036

Google Scholar

[5] H. Hadiyanto, N. P. Adetya, Response surface optimization of lipid and protein extractions from Spirulina platensis using ultrasound assisted osmotic shock method, Food Sci. Biotechnol. 27 (2018) 1-8.

DOI: 10.1007/s10068-018-0389-y

Google Scholar

[6] Y. Aysun, S. Oznur, D. D. Ceren, B. Fatih, O. Beraat, Optimisation of ultrasound-assisted extraction of protein from Spirulina platensis using RSM, Czech J. Food Sci. 36 (2018) 98-108.

DOI: 10.17221/64/2017-cjfs

Google Scholar

[7] L. Vernès, M. Abert-Vian, M. El Maâtaoui, Y. Tao, I. Bornard, F. Chemat, Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects, Ultrason. Sonochem. 54 (2019) 48-60.

DOI: 10.1016/j.ultsonch.2019.02.016

Google Scholar

[8] N. S. Parimi, M. Singh, J. R. Kastner, K. C. Das, L. S. Forsberg, P. Azadi, Optimization of protein extraction from Spirulina platensis to generate a potential co-product and a biofuel feedstock with reduced nitrogen content, Front. Energy Res. 3 (2015) 1-9.

DOI: 10.3389/fenrg.2015.00030

Google Scholar

[9] P. Saranraj, S. Sivasakthi, Spirulina Platensis – Food for Future : A Review, Asian J. Pharm. Sci. Technol. 4 (2014) 26-33.

Google Scholar

[10] C. Safi, A. V. Ursu, C. Laroche, B. Zebib, O. Merah, P. Y. Pontalier, C. Vaca-Garcia, Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods, Algal Res. 3 (2014) 61-65.

DOI: 10.1016/j.algal.2013.12.004

Google Scholar

[11] C. V. G. López, M. del Carmen Cerón García, F. G. A. Fernández, C. S. Bustos, Y. Chisti, J. M. F. Sevilla, Protein measurements of microalgal and cyanobacterial biomass, Bioresour. Technol. 101 (2010) 7587-7591.

DOI: 10.1016/j.biortech.2010.04.077

Google Scholar

[12] W. N. Phong, C. F. Le, P. L. Show, J. S. Chang, T. C. Ling, Extractive disruption process integration using ultrasonication and an aqueous two-phase system for protein recovery from Chlorella sorokiniana, Eng. Life Sci. 17 (2017) 357-369.

DOI: 10.1002/elsc.201600133

Google Scholar

[13] M. D. Esclapez, A. Mulet, J. A. Ca, Ultrasound-Assisted Extraction of Natural Products, Food Eng. Rev. 3 (2011) 108-120.

DOI: 10.1007/s12393-011-9036-6

Google Scholar

[14] I. Lavilla, C. Bendicho, Fundamentals of Ultrasound-Assisted Extraction, in: Water Extr. Bioact. Compd. From Plants to Drug Dev., Elsevier Inc., Amsterdam, (2017) 291-316.

DOI: 10.1016/b978-0-12-809380-1.00011-5

Google Scholar

[15] O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193 (1951) 265-275.

DOI: 10.1016/s0021-9258(19)52451-6

Google Scholar

[16] G. Yoo, W. K. Park, C. W. Kim, Y. E. Choi, J. W. Yang, Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock, Bioresour. Technol. 123 (2012) 717-722.

DOI: 10.1016/j.biortech.2012.07.102

Google Scholar

[17] Hadiyanto, Suttrisnorhadi, H. Sutanto, M. Suzery, Phyocyanin extraction from microalgae Spirulina platensis assisted by ultrasound irradiation: Effect of time and temperature, Songklanakarin J. Sci. Technol. 38 (2016) 391-398.

DOI: 10.1063/1.4938294

Google Scholar

[18] M. Vinatoru, M. Toma, O. Radu, P. I. Filip, D. Lazurca, T. J. Mason, The use of ultrasound for the extraction of bioactive principles from plant materials, Ultrason. Sonochem. 4 (1997) 135-139.

DOI: 10.1016/s1350-4177(97)83207-5

Google Scholar