Temperature and Electric Field Dependent Phase Transformations in [001] PMN-PT Single Crystal

Article Preview

Abstract:

The capacitance of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) [001]-oriented single crystal was examined as a function of temperature and applied external dc electric field. The phase transition temperatures under the applied electric field were measured upon cooling the crystal (zero-field heating field-cooling condition) from paraelectric cubic phase. From these data, temperature versus electric field phase diagram of PMN-xPT crystal have been constructed and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-59

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.-E. Park and T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82 (1997) 1804-1811.

DOI: 10.1063/1.365983

Google Scholar

[2] H. Fu and R.E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature (London) 403 (2000) 281-283.

DOI: 10.1038/35002022

Google Scholar

[3] S. Zhang and T. R Shrout, Relaxor-PT single crystals: Observations and Developments, IEEE Trans. Ultrason, Ferroelectr. Freq. Control. 57 (2010) 2138-2146.

DOI: 10.1109/tuffc.2010.1670

Google Scholar

[4] B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones and L.E. Cross, Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3, Phys. Rev. B 63 (2000) 014103 (1-9).

Google Scholar

[5] D. Vanderbilt and M.H. Cohen, Monoclinic and triclinic phases in higher order Devonshire theory, Phys. Rev. B 63 (2001) 094108 (1-9).

DOI: 10.1103/physrevb.63.094108

Google Scholar

[6] F. Bai. N. Wang, J. Li, D. Viehland, P. M. Gehring, G. Xu and G. Shirane, X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7 Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal, J. Appl. Phys. 96 (2004) 1620-1627.

DOI: 10.1063/1.1766087

Google Scholar

[7] G. Shabbir, S. Kojima and C. Feng, High temperature dc field poling effects on the structural phase transformations of (1−x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystal with morphotropic phase boundary composition, J. Appl. Phys. 100 (2006) 064107(1-4).

DOI: 10.1063/1.2337103

Google Scholar

[8] G. Shabbir and S. Kojima, Central peak and acoustic anomalies of the relaxor ferroelectric lead magnesium niobate-lead titanate single crystal studied by the micro-Brillouin scattering, Appl. Phys. Lett. 91 (2007) 062911 (1-3).

DOI: 10.1063/1.2768306

Google Scholar

[9] G. Shabbir and S. Kojima, Brillouin scattering investigations of lead magnesium niobate–lead titanate single crystal, Ceram. Int. 30 (2004) 1707-1710.

DOI: 10.1016/j.ceramint.2003.12.148

Google Scholar

[10] G. Shabbir, S. Kojima and J.-H. Ko, Field induced dielectric anomalies and aging behavior in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with x = 0.33. J. Kor. Phys. Soc. 71 (2017) 974-978.

DOI: 10.3938/jkps.71.974

Google Scholar

[11] K. Ohwada, K. Hirota, P. Rehrig, Y. Fujii, and G. Shirane, Neutron diffraction study of field-cooling effects on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3, Phys. Rev. B 67 (2003) 094111(1-8).

Google Scholar