Effect of Nano-Silica Volume Reinforcement on the Microstructure, Mechanical, Phase Distribution and Electrochemical Behavior of Pre-Alloyed Titanium-Nickel (Ti-Ni) Powder

Article Preview

Abstract:

Titanium-Nickel pre-alloyed powder was reinforced with Nano-Silica in 2%, 4% , 6% and 8 wt. % due to effectiveness of Nanoscale ceramic Reinforcement in improving the properties of Metals and Alloys. The compositions of the Pre-Alloyed powders and Nano Silica Approximately 50 nm in diameter and spherical in shape were weighed and mixed in Planetary Ball Mill followed by compaction at 50 MPa using a Uniaxial Compaction machine The green pellets obtained were sintered in Argon Environment for 5 hrs and allowed to furnace cool. The pellets were then sectioned through their cross-section for slices 3 mm thick followed by Cold-mounting and Soldering followed by cold mounting additionally. The Samples were analyzed via X-Ray Diffraction (XRD) for phase distribution as a function of variation in nano-Silica reinforcements and Microstructural analysis was performed via Optical Microscope. The effect of Volume percentage on the densification was determined via Archimedes principle and Micro-Vickers hardness was used for mechanical Evaluation. The Electrochemical Properties were evaluated using Potentio-Dynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in neutral salt solution (3.5% NaCl). The results indicated increasing dissolution of the TiNi phase into intermetallic Titanium-rich and Ni-rich phases in the matrix and hardening due to the Nano-Silica effect of Grain Boundary impingement and phase dissolution of Equiatomic phase and mixed behavior in Corrosion properties as determined by the electrochemical techniques whereas densification decreased due to poor plasticity of Nano-Silica and hinderance in diffusion during the sintering process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-69

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. E.-Souni, H. Fischer-Brandies, On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility, Biomat. 23 (2002) 2887–2894.

DOI: 10.1016/s0142-9612(01)00416-1

Google Scholar

[2] M. do A. Ferreira, M.A. Luersen, P.C. Borges, Nickel-titanium alloys: a systematic review, Dental Press J. Orthod. 17 (2012) 71–82.

DOI: 10.1590/s2176-94512012000300016

Google Scholar

[3] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511–678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[4] T.W. Duerig, K.N. Melton, D. Stockel, Engineering aspects of shape memory alloys, 1990, pp.168-191.

Google Scholar

[5] C. Velmurugan, V. Senthilkumar, S. Dinesh, D. Arulkirubakaran, Machining of NiTi-shape memory alloys-A review, Mach. Sci. Technol. 22 (2018) 355–401.

DOI: 10.1080/10910344.2017.1365894

Google Scholar

[6] T.W. Duerig, A.R. Pelton, Ti-Ni Shape Memory Alloys, Mater. Prop. Handb. Titan. Alloy (1994) 1035–1048.

Google Scholar

[7] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des 56, (2014) 1078–1113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[8] M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, , R. Molfino, Critical review of current trends in shape memory alloy actuators for intelligent robots, Ind. Rob. 34 (2007) 285–294.

DOI: 10.1108/01439910710749609

Google Scholar

[9] J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys, Int. Mater. Rev. 55 (2010) 257–315.

DOI: 10.1179/095066010x12646898728363

Google Scholar

[10] J. Cui et al, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 5 (2006) 286–290.

DOI: 10.1038/nmat1593

Google Scholar

[11] F. Yang, L. Kovarik, P.J. Phillips, R.D. Noebe, M.J. Mills, Characterizations of precipitate phases in a Ti-Ni-Pd alloy, Scr. Mater. 67 (2012) 145–148.

DOI: 10.1016/j.scriptamat.2012.04.003

Google Scholar

[12] L. Gou, Y. Liu, , T.Y. Ng, An investigation on the crystal structures of Ti50Ni 50-xCux shape memory alloys based on density functional theory calculations, Intermetal. 53 (2014) 20–25.

DOI: 10.1016/j.intermet.2014.04.013

Google Scholar

[13] Y.F. Zheng et al, Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag, Acta. Biomater. 7 (2011) 2758–2767.

DOI: 10.1016/j.actbio.2011.02.010

Google Scholar

[14] S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, J.H. Huang, , M. C. Lin, A study of TiNiCr ternary shape memory alloys, J. All. Comp. 494 (2010) 155–160.

DOI: 10.1016/j.jallcom.2010.01.052

Google Scholar

[15] S.H. Kayani, M.I. Khan, F.A. Khalid, H.Y. Kim, , S. Miyazaki, Precipitation Behavior of Thermo-Mechanically Treated Ti50Ni20Au20Cu10 High-Temperature Shape-Memory Alloy, Shape Mem. Superelasticity 2 (2015) 29–36.

DOI: 10.1007/s40830-015-0048-6

Google Scholar

[16] H.C. Lin, K.M. Lin, S.K. Chang, , C.S. Lin, A study of TiNiV ternary shape memory alloys, J. All. Comp. 284 (1999) 213–217.

DOI: 10.1016/s0925-8388(98)00937-2

Google Scholar

[17] Y.X. Tong et al, Microstructure and martensitic transformation of an ultrafine-grained TiNiNb shape memory alloy processed by equal channel angular pressing, Intermetallics 49 (2014) 81–86.

DOI: 10.1016/j.intermet.2014.01.019

Google Scholar

[18] S.R. Bakshi, D. Lahiri, , A. Agarwal, Carbon nanotube reinforced metal matrix composites - A review, Int. Mater. Rev. 55 (2010) 41–64.

DOI: 10.1179/095066009x12572530170543

Google Scholar

[19] M. Farvizi et al, Microstructural characterization of HIP consolidated NiTi-nano Al2O3composites, J. All. Comp. 606 (2014) 21–26.

Google Scholar

[20] K. Johansen, H. Voggenreiter, , G. Eggeler, On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy, J. All. Comp. 275 (1999) 410–414.

DOI: 10.1016/s0921-5093(99)00308-1

Google Scholar

[21] D. Mari , D.C. Dunand, NiTi and NiTi-TiC Composites : Part I . Transformation and Thermal Cycling Behavior, Mater. Sci. Eng. 26 (1995) 2833–2847.

DOI: 10.1007/bf02669642

Google Scholar

[22] M. Akmal, A. Raza, M.M. Khan, M.I. Khan, , M.A. Hussain, Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant, Mater. Sci. Eng. C 68 (2016) 30–36.

DOI: 10.1016/j.msec.2016.05.092

Google Scholar

[23] B. A. Obadele, O. O. Ige, , P. A. Olubambi, Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering, J. All. Comp. 710 825–830, (2017).

DOI: 10.1016/j.jallcom.2017.03.340

Google Scholar

[24] L. Hu, A. Kothalkar, G. Proust, I. Karaman, M. Radovic, Fabrication and Characterization of NiTi/Ti3SiC2 and NiTi/Ti2AlC Composites, J. All. Comp. (2014).

DOI: 10.1016/j.jallcom.2014.04.224

Google Scholar

[25] B. A.-Ahmadi, T. Gallmeyer, J.G. Pauza, T.W. Duerig, R.D. Noebe, , A.P. Stebner, Effect of a pre-aging treatment on the mechanical behaviors of Ni50.3Ti49.7 − xHfx(x ≤ 9 at.%) Shape memory alloys, Scr. Mater. 147 (2018) 11–15.

DOI: 10.1016/j.scriptamat.2017.12.024

Google Scholar

[26] H. Chen, L.J. Zheng, F.X. Zhang, H. Zhang, Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition, Mater. Sci. Eng. A 708 (2017) 514–522.

DOI: 10.1016/j.msea.2017.10.016

Google Scholar

[27] C. Yang, Q.R. Cheng, L.H. Liu, Y.H. Li, , Y.Y. Li, Effect of minor Cu content on microstructure and mechanical property of NiTiCu bulk alloys fabricated by crystallization of metallic glass powder, Intermetallics 56 (2014) 37–43.

DOI: 10.1016/j.intermet.2014.08.009

Google Scholar

[28] M.S. E.-Eskandrany, A. A.-Azmi, Potential applications of cold sprayed Cu50Ti20Ni30metallic glassy alloy powders for antibacterial protective coating in medical and food sectors, J. Mech. Behav. Biomed. Mater. 56 (2016) 183–194.

DOI: 10.1016/j.jmbbm.2015.11.030

Google Scholar

[29] D.V. Keller, Adhesion between solid metals, Wear 6 (1963) 353–365.

Google Scholar

[30] M. Farvizi, M.R. Akbarpour, D.H. Ahn, H.S. Kim, Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles, J. All. Comp. 688 (2016) 803–807.

DOI: 10.1016/j.jallcom.2016.06.299

Google Scholar

[31] B. Li, Z. Li, , X. Lu, Effect of sintering processing on property of porous Ti using space holder technique, Trans. Nonferrous Met. Soc. China 25 (2015) 2965–2973.

DOI: 10.1016/s1003-6326(15)63923-1

Google Scholar

[32] N.D. Alqarni, J. Wysocka, N. E.-Bagoury, J. Ryl, M.A. Amin, R. Boukherroub, Effect of cobalt addition on the corrosion behavior of near equiatomic NiTi shape memory alloy in normal saline solution: Electrochemical and XPS studies, RSC Adv. 8 (2018) 19289–19300.

DOI: 10.1039/c8ra02031k

Google Scholar

[33] S.A. Fadlallah, N. E.-Bagoury, S.M.F. Gad El-Rab, R.A. Ahmed, G. E.-Ousamii, An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application, J. All. Comp. 583 (2014) 455–464.

DOI: 10.1016/j.jallcom.2013.08.029

Google Scholar