[1]
M. E.-Souni, H. Fischer-Brandies, On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility, Biomat. 23 (2002) 2887–2894.
DOI: 10.1016/s0142-9612(01)00416-1
Google Scholar
[2]
M. do A. Ferreira, M.A. Luersen, P.C. Borges, Nickel-titanium alloys: a systematic review, Dental Press J. Orthod. 17 (2012) 71–82.
DOI: 10.1590/s2176-94512012000300016
Google Scholar
[3]
K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511–678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[4]
T.W. Duerig, K.N. Melton, D. Stockel, Engineering aspects of shape memory alloys, 1990, pp.168-191.
Google Scholar
[5]
C. Velmurugan, V. Senthilkumar, S. Dinesh, D. Arulkirubakaran, Machining of NiTi-shape memory alloys-A review, Mach. Sci. Technol. 22 (2018) 355–401.
DOI: 10.1080/10910344.2017.1365894
Google Scholar
[6]
T.W. Duerig, A.R. Pelton, Ti-Ni Shape Memory Alloys, Mater. Prop. Handb. Titan. Alloy (1994) 1035–1048.
Google Scholar
[7]
J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des 56, (2014) 1078–1113.
DOI: 10.1016/j.matdes.2013.11.084
Google Scholar
[8]
M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, , R. Molfino, Critical review of current trends in shape memory alloy actuators for intelligent robots, Ind. Rob. 34 (2007) 285–294.
DOI: 10.1108/01439910710749609
Google Scholar
[9]
J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys, Int. Mater. Rev. 55 (2010) 257–315.
DOI: 10.1179/095066010x12646898728363
Google Scholar
[10]
J. Cui et al, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 5 (2006) 286–290.
DOI: 10.1038/nmat1593
Google Scholar
[11]
F. Yang, L. Kovarik, P.J. Phillips, R.D. Noebe, M.J. Mills, Characterizations of precipitate phases in a Ti-Ni-Pd alloy, Scr. Mater. 67 (2012) 145–148.
DOI: 10.1016/j.scriptamat.2012.04.003
Google Scholar
[12]
L. Gou, Y. Liu, , T.Y. Ng, An investigation on the crystal structures of Ti50Ni 50-xCux shape memory alloys based on density functional theory calculations, Intermetal. 53 (2014) 20–25.
DOI: 10.1016/j.intermet.2014.04.013
Google Scholar
[13]
Y.F. Zheng et al, Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag, Acta. Biomater. 7 (2011) 2758–2767.
DOI: 10.1016/j.actbio.2011.02.010
Google Scholar
[14]
S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, J.H. Huang, , M. C. Lin, A study of TiNiCr ternary shape memory alloys, J. All. Comp. 494 (2010) 155–160.
DOI: 10.1016/j.jallcom.2010.01.052
Google Scholar
[15]
S.H. Kayani, M.I. Khan, F.A. Khalid, H.Y. Kim, , S. Miyazaki, Precipitation Behavior of Thermo-Mechanically Treated Ti50Ni20Au20Cu10 High-Temperature Shape-Memory Alloy, Shape Mem. Superelasticity 2 (2015) 29–36.
DOI: 10.1007/s40830-015-0048-6
Google Scholar
[16]
H.C. Lin, K.M. Lin, S.K. Chang, , C.S. Lin, A study of TiNiV ternary shape memory alloys, J. All. Comp. 284 (1999) 213–217.
DOI: 10.1016/s0925-8388(98)00937-2
Google Scholar
[17]
Y.X. Tong et al, Microstructure and martensitic transformation of an ultrafine-grained TiNiNb shape memory alloy processed by equal channel angular pressing, Intermetallics 49 (2014) 81–86.
DOI: 10.1016/j.intermet.2014.01.019
Google Scholar
[18]
S.R. Bakshi, D. Lahiri, , A. Agarwal, Carbon nanotube reinforced metal matrix composites - A review, Int. Mater. Rev. 55 (2010) 41–64.
DOI: 10.1179/095066009x12572530170543
Google Scholar
[19]
M. Farvizi et al, Microstructural characterization of HIP consolidated NiTi-nano Al2O3composites, J. All. Comp. 606 (2014) 21–26.
Google Scholar
[20]
K. Johansen, H. Voggenreiter, , G. Eggeler, On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy, J. All. Comp. 275 (1999) 410–414.
DOI: 10.1016/s0921-5093(99)00308-1
Google Scholar
[21]
D. Mari , D.C. Dunand, NiTi and NiTi-TiC Composites : Part I . Transformation and Thermal Cycling Behavior, Mater. Sci. Eng. 26 (1995) 2833–2847.
DOI: 10.1007/bf02669642
Google Scholar
[22]
M. Akmal, A. Raza, M.M. Khan, M.I. Khan, , M.A. Hussain, Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant, Mater. Sci. Eng. C 68 (2016) 30–36.
DOI: 10.1016/j.msec.2016.05.092
Google Scholar
[23]
B. A. Obadele, O. O. Ige, , P. A. Olubambi, Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering, J. All. Comp. 710 825–830, (2017).
DOI: 10.1016/j.jallcom.2017.03.340
Google Scholar
[24]
L. Hu, A. Kothalkar, G. Proust, I. Karaman, M. Radovic, Fabrication and Characterization of NiTi/Ti3SiC2 and NiTi/Ti2AlC Composites, J. All. Comp. (2014).
DOI: 10.1016/j.jallcom.2014.04.224
Google Scholar
[25]
B. A.-Ahmadi, T. Gallmeyer, J.G. Pauza, T.W. Duerig, R.D. Noebe, , A.P. Stebner, Effect of a pre-aging treatment on the mechanical behaviors of Ni50.3Ti49.7 − xHfx(x ≤ 9 at.%) Shape memory alloys, Scr. Mater. 147 (2018) 11–15.
DOI: 10.1016/j.scriptamat.2017.12.024
Google Scholar
[26]
H. Chen, L.J. Zheng, F.X. Zhang, H. Zhang, Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition, Mater. Sci. Eng. A 708 (2017) 514–522.
DOI: 10.1016/j.msea.2017.10.016
Google Scholar
[27]
C. Yang, Q.R. Cheng, L.H. Liu, Y.H. Li, , Y.Y. Li, Effect of minor Cu content on microstructure and mechanical property of NiTiCu bulk alloys fabricated by crystallization of metallic glass powder, Intermetallics 56 (2014) 37–43.
DOI: 10.1016/j.intermet.2014.08.009
Google Scholar
[28]
M.S. E.-Eskandrany, A. A.-Azmi, Potential applications of cold sprayed Cu50Ti20Ni30metallic glassy alloy powders for antibacterial protective coating in medical and food sectors, J. Mech. Behav. Biomed. Mater. 56 (2016) 183–194.
DOI: 10.1016/j.jmbbm.2015.11.030
Google Scholar
[29]
D.V. Keller, Adhesion between solid metals, Wear 6 (1963) 353–365.
Google Scholar
[30]
M. Farvizi, M.R. Akbarpour, D.H. Ahn, H.S. Kim, Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles, J. All. Comp. 688 (2016) 803–807.
DOI: 10.1016/j.jallcom.2016.06.299
Google Scholar
[31]
B. Li, Z. Li, , X. Lu, Effect of sintering processing on property of porous Ti using space holder technique, Trans. Nonferrous Met. Soc. China 25 (2015) 2965–2973.
DOI: 10.1016/s1003-6326(15)63923-1
Google Scholar
[32]
N.D. Alqarni, J. Wysocka, N. E.-Bagoury, J. Ryl, M.A. Amin, R. Boukherroub, Effect of cobalt addition on the corrosion behavior of near equiatomic NiTi shape memory alloy in normal saline solution: Electrochemical and XPS studies, RSC Adv. 8 (2018) 19289–19300.
DOI: 10.1039/c8ra02031k
Google Scholar
[33]
S.A. Fadlallah, N. E.-Bagoury, S.M.F. Gad El-Rab, R.A. Ahmed, G. E.-Ousamii, An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application, J. All. Comp. 583 (2014) 455–464.
DOI: 10.1016/j.jallcom.2013.08.029
Google Scholar