[1]
Abdullah, M. M., Kamarudin, H., Nizar, I. K., Bnhussain, M., Zarina, Y., & Rafiza, A. (2011). Correlation between Na2SiO3/NaOH Ratio and Fly Ash/Alkaline Activator Ratio to the Strength of Geopolymer. Advanced Materials Research, 341-342, 189-193. https://doi.org/10.4028/www.scientific.net/amr.341-342.189.
DOI: 10.4028/www.scientific.net/amr.341-342.189
Google Scholar
[2]
Al-Shathr, B., Shamsa, M., & Al-Attar, T. (2018). Relationship between amorphous silica in source materials and compressive strength of geopolymer concrete. MATEC Web of Conferences, 162, 02019. https://doi.org/10.1051/matecconf/201816202019.
DOI: 10.1051/matecconf/201816202019
Google Scholar
[3]
Aslani, F. (2016). Thermal Performance Modeling of Geopolymer Concrete. Journal of Materials in Civil Engineering, 28(1), 04015062. https://doi.org/10.1061/(asce)mt.1943-5533.0001291.
DOI: 10.1061/(asce)mt.1943-5533.0001291
Google Scholar
[4]
ASTM, (2020). ASTM C109/C109M-20b.Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). West Conshohocken, PA: ASTM International.
DOI: 10.1520/c0109_c0109m-20
Google Scholar
[5]
ASTM, (2010). ASTM C597-02. Standard test method for pulse velocity through concrete. West Conshohocken, PA: ASTM International.
Google Scholar
[6]
ASTM, (2005). ASTM D5873. Standard test method for determination of rock hardness by rebound hammer method. West Conshohocken, PA: ASTM International.
Google Scholar
[7]
Diaz, E., Allouche, E., & Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992-996. https://doi.org/10.1016/j.fuel.2009.09.012.
DOI: 10.1016/j.fuel.2009.09.012
Google Scholar
[8]
Ferraiolo, G., Zilli, M., & Converti, A. (2007). Fly ash disposal and utilization. Journal of Chemical Technology & Biotechnology, 47(4), 281-305. https://doi.org/10.1002/jctb.280470402.
DOI: 10.1002/jctb.280470402
Google Scholar
[9]
Fifinatasha, N., Abdullah, M. M., Ghazali, C. M., Hussin, K., Binhussain, M., & Sandu, A. V. (2015). Comparison Characterization of Geopolymer Source Materials for Coating Application. Applied Mechanics and Materials, 754-755, 664-670. https://doi.org/10.4028/www.scientific.net/amm.754-755.664.
DOI: 10.4028/www.scientific.net/amm.754-755.664
Google Scholar
[10]
Habert, G. (2013). Environmental impact of Portland cement production. Eco-Efficient Concrete, 3-25.
DOI: 10.1533/9780857098993.1.3
Google Scholar
[11]
Heath, A., Paine, K., Goodhew, S., Ramage, M., & Lawrence, M. (2013). The potential for using geopolymer concrete in the UK. Proceedings of the Institution of Civil Engineers - Construction Materials, 166(4), 195-203. https://doi.org/10.1680/coma.12.00030.
DOI: 10.1680/coma.12.00030
Google Scholar
[12]
Ishak, S., Lee, H. S., Singh, J. K., Mohd Ariffin, M. A., Abdul Shukor Lim, N. H. and Yang, H. M. (2019). Performance of Fly Ash Geopolymer Concrete Incorporating Bamboo Ash at Elevated Temperature. Materials(Basel), 12(20), 3404. https://doi.org/10.3390/ma12203404.
DOI: 10.3390/ma12203404
Google Scholar
[13]
Kress, N. (1993). Chemical Aspects of Coal Fly Ash Disposal at Sea: Predicting and Monitoring Environmental Impact. Water Science and Technology, 27(7-8), 449-455. https://doi.org/10.2166/wst.1993.0581.
DOI: 10.2166/wst.1993.0581
Google Scholar
[14]
Lai, J. C., Rahman, W. A., & Toh, W. Y. (2013). Characterisation of sago pith waste and its composites. Industrial Crops and Products, 45, 319-326. https://doi.org/10.1016/j.indcrop.2012.12.046.
DOI: 10.1016/j.indcrop.2012.12.046
Google Scholar
[15]
Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P., Bai, J., & He, K. (2015). Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524(7565), 335-338. https://doi.org/10.1038/nature14677.
DOI: 10.1038/nature14677
Google Scholar
[16]
Mueller, S. F., Mallard, J. W., Mao, Q., & Shaw, S. L. (2013). Fugitive particulate emission factors for dry fly ash disposal. Journal of the Air & Waste Management Association, 63(7), 806-818. https://doi.org/10.1080/10962247.2013.795201.
DOI: 10.1080/10962247.2013.795201
Google Scholar
[17]
Nataraja, M., Nagaraj, T., Das, L., & Sandeep, N. R. (2007). Exploiting potential use of partially deteriorated cement in concrete mixtures. Resources, Conservation and Recycling, 51(2), 355-366. https://doi.org/10.1016/j.resconrec.2006.10.004.
DOI: 10.1016/j.resconrec.2006.10.004
Google Scholar
[18]
Okoye, F., Durgaprasad, J., & Singh, N. (2016, 02). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000-3006. https://doi.org.10.1016/j.ceramint.2015.10.084.
DOI: 10.1016/j.ceramint.2015.10.084
Google Scholar
[19]
Palomo, Á, Alonso, S., Fernandez-Jiménez, A., Sobrados, I., & Sanz, J. (2004). Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products. Journal of the American Ceramic Society, 87(6), 1141-1145. https://doi.org/10.1111/j.1551-2916.2004.01141.x.
DOI: 10.1111/j.1551-2916.2004.01141.x
Google Scholar
[20]
Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1-18. htpps://doi.org/10.1016/j.jclepro.2016.02.013.
DOI: 10.1016/j.jclepro.2016.02.013
Google Scholar
[21]
Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Quéré, C. L., and Wilson, C. (2012). The challenge to keep global warming below 2 °C. Nature Climate Change, 3(1), 4-6. https://doi.org/10.1038/nclimate1783.
DOI: 10.1038/nclimate1783
Google Scholar
[22]
Rangan, B. (2009). Engineering properties of geopolymer concrete. Geopolymers, 211-226. https://doi.org/10.1533/9781845696382.2.211.
DOI: 10.1533/9781845696382.2.211
Google Scholar
[23]
Rashid, M. R., Johari, M. A., & Ahmad, Z. A. (2016). Sago Pith Waste Ash as a New Alternative Raw Materials from Agricultural Waste. Materials Science Forum, 840, 389-393. https://doi.org/10.4028/www.scientific.net/msf.840.389.
DOI: 10.4028/www.scientific.net/msf.840.389
Google Scholar
[24]
Rashid, M. R., Mijarsh, M. J., Seli, H., Johari, M. A., & Ahmad, Z. A. (2017). Sago pith waste ash as a potential raw material for ceramic and geopolymer fabrication. Journal of Material Cycles and Waste Management, 20(2), 1090-1098. https://doi.org/10.1007/s10163-017-0672-7.
DOI: 10.1007/s10163-017-0672-7
Google Scholar
[25]
Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material's oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12-23. https://doi.org/10.1016/j.micromeso.2016.07.005.
DOI: 10.1016/j.micromeso.2016.07.005
Google Scholar
[26]
Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409-418. https://doi.org/10.1016/j.conbuildmat.2013.05.069.
DOI: 10.1016/j.conbuildmat.2013.05.069
Google Scholar
[27]
Sarker, P. K. (2008). Analysis of geopolymer concrete columns. Materials and Structures, 42(6), 715-724. https://doi.org/10.1617/s11527-008-9415-5.
Google Scholar
[28]
Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011, 07). Sustainable cement production—present and future. Cement and Concrete Research, 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019.
DOI: 10.1016/j.cemconres.2011.03.019
Google Scholar
[29]
Singh, R. K., Gupta, N. C., & Guha, B. K. (2016). Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination. Journal of The Institution of Engineers (India): Series A, 97(3), 255-260. https://doi.org/10.1007/s40030-016-0165-z.
DOI: 10.1007/s40030-016-0165-z
Google Scholar
[30]
Sunarti, T. C., Yanti, S. D., & Ruriani, E. (2017). Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production. IOP Conference Series: Earth and Environmental Science, 65, 012052. https://doi.org/10.1088/1755-1315/65/1/012052.
DOI: 10.1088/1755-1315/65/1/012052
Google Scholar
[31]
Tudin, D. Z., Rizalman, A. N., & Asrah, H. (2018). Performance of Palm Oil Fuel Ash and Rice Husk Ash Based Geopolymer Mortar. E3S Web of Conferences, 65, 02011. https://doi.org/10.1051/e3sconf/20186502011.
DOI: 10.1051/e3sconf/20186502011
Google Scholar
[32]
Vejmelková, E., Koňáková, D., Čáchová, M., Keppert, M., Hubáček, A., & Černý, R. (2014). Application of Zeolite as a Partial Replacement of Cement in Concrete Production. Applied Mechanics and Materials, 621, 30-34. https://doi.org/10.4028/www.scientific.net/amm.621.30.
DOI: 10.4028/www.scientific.net/amm.621.30
Google Scholar
[33]
Yahya, Z., Abdullah, M. M., Ramli, N. M., Burduhos-Nergis, D. D., & Razak, R. A. (2018). Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing. IOP Conference Series: Materials Science and Engineering, 374, 012068. https://doi.org/10.1088/1757-899x/374/1/012068.
DOI: 10.1088/1757-899x/374/1/012068
Google Scholar
[34]
Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643-655. https://doi.org/10.1016/j.conbuildmat.2013.05.043.
DOI: 10.1016/j.conbuildmat.2013.05.043
Google Scholar