Effect of Treated Sago Pith Waste Ash and Silica Fume to the Mechanical Properties of Fly Ash-Based Geopolymer Brick

Article Preview

Abstract:

This paper investigates the effect of partial replacement of fly ash with sago pith waste ash and silica fume in fabricating the geopolymer mortar concrete. The mixtures of geopolymer mortar concrete were prepared by replacing sago pith waste ash and silica fume at 5% of total weight of fly ash. There were six specimens of geopolymer mortar cubes and bricks fabricated in this study. The specimens are tested with compressive strength test, rebound hammer test and ultrasonic pulse velocity test. The results from the tests are compared with some existing published works as to clarify the effect of replacing the fly ash with sago waste and silica fume on the strength of concrete. Comparisons had been made and concluded that the molarity of alkaline solution, Al3O2 and CaO influenced the development of compressive strength along the curing time of fly ash based geopolymer concrete.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-114

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abdullah, M. M., Kamarudin, H., Nizar, I. K., Bnhussain, M., Zarina, Y., & Rafiza, A. (2011). Correlation between Na2SiO3/NaOH Ratio and Fly Ash/Alkaline Activator Ratio to the Strength of Geopolymer. Advanced Materials Research, 341-342, 189-193. https://doi.org/10.4028/www.scientific.net/amr.341-342.189.

DOI: 10.4028/www.scientific.net/amr.341-342.189

Google Scholar

[2] Al-Shathr, B., Shamsa, M., & Al-Attar, T. (2018). Relationship between amorphous silica in source materials and compressive strength of geopolymer concrete. MATEC Web of Conferences, 162, 02019. https://doi.org/10.1051/matecconf/201816202019.

DOI: 10.1051/matecconf/201816202019

Google Scholar

[3] Aslani, F. (2016). Thermal Performance Modeling of Geopolymer Concrete. Journal of Materials in Civil Engineering, 28(1), 04015062. https://doi.org/10.1061/(asce)mt.1943-5533.0001291.

DOI: 10.1061/(asce)mt.1943-5533.0001291

Google Scholar

[4] ASTM, (2020). ASTM C109/C109M-20b.Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). West Conshohocken, PA: ASTM International.

DOI: 10.1520/c0109_c0109m-20

Google Scholar

[5] ASTM, (2010). ASTM C597-02. Standard test method for pulse velocity through concrete. West Conshohocken, PA: ASTM International.

Google Scholar

[6] ASTM, (2005). ASTM D5873. Standard test method for determination of rock hardness by rebound hammer method. West Conshohocken, PA: ASTM International.

Google Scholar

[7] Diaz, E., Allouche, E., & Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992-996. https://doi.org/10.1016/j.fuel.2009.09.012.

DOI: 10.1016/j.fuel.2009.09.012

Google Scholar

[8] Ferraiolo, G., Zilli, M., & Converti, A. (2007). Fly ash disposal and utilization. Journal of Chemical Technology & Biotechnology, 47(4), 281-305. https://doi.org/10.1002/jctb.280470402.

DOI: 10.1002/jctb.280470402

Google Scholar

[9] Fifinatasha, N., Abdullah, M. M., Ghazali, C. M., Hussin, K., Binhussain, M., & Sandu, A. V. (2015). Comparison Characterization of Geopolymer Source Materials for Coating Application. Applied Mechanics and Materials, 754-755, 664-670. https://doi.org/10.4028/www.scientific.net/amm.754-755.664.

DOI: 10.4028/www.scientific.net/amm.754-755.664

Google Scholar

[10] Habert, G. (2013). Environmental impact of Portland cement production. Eco-Efficient Concrete, 3-25.

DOI: 10.1533/9780857098993.1.3

Google Scholar

[11] Heath, A., Paine, K., Goodhew, S., Ramage, M., & Lawrence, M. (2013). The potential for using geopolymer concrete in the UK. Proceedings of the Institution of Civil Engineers - Construction Materials, 166(4), 195-203. https://doi.org/10.1680/coma.12.00030.

DOI: 10.1680/coma.12.00030

Google Scholar

[12] Ishak, S., Lee, H. S., Singh, J. K., Mohd Ariffin, M. A., Abdul Shukor Lim, N. H. and Yang, H. M. (2019). Performance of Fly Ash Geopolymer Concrete Incorporating Bamboo Ash at Elevated Temperature. Materials(Basel), 12(20), 3404. https://doi.org/10.3390/ma12203404.

DOI: 10.3390/ma12203404

Google Scholar

[13] Kress, N. (1993). Chemical Aspects of Coal Fly Ash Disposal at Sea: Predicting and Monitoring Environmental Impact. Water Science and Technology, 27(7-8), 449-455. https://doi.org/10.2166/wst.1993.0581.

DOI: 10.2166/wst.1993.0581

Google Scholar

[14] Lai, J. C., Rahman, W. A., & Toh, W. Y. (2013). Characterisation of sago pith waste and its composites. Industrial Crops and Products, 45, 319-326. https://doi.org/10.1016/j.indcrop.2012.12.046.

DOI: 10.1016/j.indcrop.2012.12.046

Google Scholar

[15] Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P., Bai, J., & He, K. (2015). Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524(7565), 335-338. https://doi.org/10.1038/nature14677.

DOI: 10.1038/nature14677

Google Scholar

[16] Mueller, S. F., Mallard, J. W., Mao, Q., & Shaw, S. L. (2013). Fugitive particulate emission factors for dry fly ash disposal. Journal of the Air & Waste Management Association, 63(7), 806-818. https://doi.org/10.1080/10962247.2013.795201.

DOI: 10.1080/10962247.2013.795201

Google Scholar

[17] Nataraja, M., Nagaraj, T., Das, L., & Sandeep, N. R. (2007). Exploiting potential use of partially deteriorated cement in concrete mixtures. Resources, Conservation and Recycling, 51(2), 355-366. https://doi.org/10.1016/j.resconrec.2006.10.004.

DOI: 10.1016/j.resconrec.2006.10.004

Google Scholar

[18] Okoye, F., Durgaprasad, J., & Singh, N. (2016, 02). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000-3006. https://doi.org.10.1016/j.ceramint.2015.10.084.

DOI: 10.1016/j.ceramint.2015.10.084

Google Scholar

[19] Palomo, Á, Alonso, S., Fernandez-Jiménez, A., Sobrados, I., & Sanz, J. (2004). Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products. Journal of the American Ceramic Society, 87(6), 1141-1145. https://doi.org/10.1111/j.1551-2916.2004.01141.x.

DOI: 10.1111/j.1551-2916.2004.01141.x

Google Scholar

[20] Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1-18. htpps://doi.org/10.1016/j.jclepro.2016.02.013.

DOI: 10.1016/j.jclepro.2016.02.013

Google Scholar

[21] Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Quéré, C. L., and Wilson, C. (2012). The challenge to keep global warming below 2 °C. Nature Climate Change, 3(1), 4-6. https://doi.org/10.1038/nclimate1783.

DOI: 10.1038/nclimate1783

Google Scholar

[22] Rangan, B. (2009). Engineering properties of geopolymer concrete. Geopolymers, 211-226. https://doi.org/10.1533/9781845696382.2.211.

DOI: 10.1533/9781845696382.2.211

Google Scholar

[23] Rashid, M. R., Johari, M. A., & Ahmad, Z. A. (2016). Sago Pith Waste Ash as a New Alternative Raw Materials from Agricultural Waste. Materials Science Forum, 840, 389-393. https://doi.org/10.4028/www.scientific.net/msf.840.389.

DOI: 10.4028/www.scientific.net/msf.840.389

Google Scholar

[24] Rashid, M. R., Mijarsh, M. J., Seli, H., Johari, M. A., & Ahmad, Z. A. (2017). Sago pith waste ash as a potential raw material for ceramic and geopolymer fabrication. Journal of Material Cycles and Waste Management, 20(2), 1090-1098. https://doi.org/10.1007/s10163-017-0672-7.

DOI: 10.1007/s10163-017-0672-7

Google Scholar

[25] Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material's oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12-23. https://doi.org/10.1016/j.micromeso.2016.07.005.

DOI: 10.1016/j.micromeso.2016.07.005

Google Scholar

[26] Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409-418. https://doi.org/10.1016/j.conbuildmat.2013.05.069.

DOI: 10.1016/j.conbuildmat.2013.05.069

Google Scholar

[27] Sarker, P. K. (2008). Analysis of geopolymer concrete columns. Materials and Structures, 42(6), 715-724. https://doi.org/10.1617/s11527-008-9415-5.

Google Scholar

[28] Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011, 07). Sustainable cement production—present and future. Cement and Concrete Research, 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019.

DOI: 10.1016/j.cemconres.2011.03.019

Google Scholar

[29] Singh, R. K., Gupta, N. C., & Guha, B. K. (2016). Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination. Journal of The Institution of Engineers (India): Series A, 97(3), 255-260. https://doi.org/10.1007/s40030-016-0165-z.

DOI: 10.1007/s40030-016-0165-z

Google Scholar

[30] Sunarti, T. C., Yanti, S. D., & Ruriani, E. (2017). Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production. IOP Conference Series: Earth and Environmental Science, 65, 012052. https://doi.org/10.1088/1755-1315/65/1/012052.

DOI: 10.1088/1755-1315/65/1/012052

Google Scholar

[31] Tudin, D. Z., Rizalman, A. N., & Asrah, H. (2018). Performance of Palm Oil Fuel Ash and Rice Husk Ash Based Geopolymer Mortar. E3S Web of Conferences, 65, 02011. https://doi.org/10.1051/e3sconf/20186502011.

DOI: 10.1051/e3sconf/20186502011

Google Scholar

[32] Vejmelková, E., Koňáková, D., Čáchová, M., Keppert, M., Hubáček, A., & Černý, R. (2014). Application of Zeolite as a Partial Replacement of Cement in Concrete Production. Applied Mechanics and Materials, 621, 30-34. https://doi.org/10.4028/www.scientific.net/amm.621.30.

DOI: 10.4028/www.scientific.net/amm.621.30

Google Scholar

[33] Yahya, Z., Abdullah, M. M., Ramli, N. M., Burduhos-Nergis, D. D., & Razak, R. A. (2018). Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing. IOP Conference Series: Materials Science and Engineering, 374, 012068. https://doi.org/10.1088/1757-899x/374/1/012068.

DOI: 10.1088/1757-899x/374/1/012068

Google Scholar

[34] Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643-655. https://doi.org/10.1016/j.conbuildmat.2013.05.043.

DOI: 10.1016/j.conbuildmat.2013.05.043

Google Scholar