[1]
Statista, Production of cement in Malaysia 2013-2019. (2020).
Google Scholar
[2]
A.M. Rashad, H.E.D.H. Seleem, A study on high strength concrete with moderate cement content incorporating limestone powder. Building Research Journal. 61 (2014) 43-58.
DOI: 10.2478/brj-2014-0004
Google Scholar
[3]
H.M. Owaid, R.B. Hamid, M.R. Taha, A review of sustainable supplementary cementitious materials as an alternative to all-Portland cement mortar and concrete. Australian Journal of Basic and Applied Sciences. 6 (2012) 287-303.
Google Scholar
[4]
P. Ganesh, A.R. Murthy, Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. Construction and Building Materials. 197 (2019) 667-680.
DOI: 10.1016/j.conbuildmat.2018.11.240
Google Scholar
[5]
M. Kumar, N.P. Singh, S.K. Singh, N.B. Singh, Combined effect of sodium sulphate and superplasticizer on the hydration of fly ash blended Portland® cement. Materials Research. 13 (2010) 177-183.
DOI: 10.1590/s1516-14392010000200010
Google Scholar
[6]
O. Boukendakdji, E.H. Kadri, S. Kenai, Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Cement and concrete composites. 34 (2010) 583-590.
DOI: 10.1016/j.cemconcomp.2011.08.013
Google Scholar
[7]
V.P. Kumar, K. Gunasekaran, T. Shyamala, Characterization study on coconut shell concrete with partial replacement of cement by GGBS, Journal of Building Engineering. 26 (2019) 100830.
DOI: 10.1016/j.jobe.2019.100830
Google Scholar
[8]
British Standard Institution, BS 1881-124:2015, Testing concrete. Methods for analysis of hardened concrete,, London (2015).
Google Scholar
[9]
M.A. Caldarone, High-Strength Concrete: A Practical Guide: Taylor & Francis, (2008).
Google Scholar
[10]
M.S. Darmawan, R. Bayuaji, N.A. Husin, I. Saud, A Case study of low compressive strength of concrete containing fly ash in East Java Indonesia, Procedia Engineering. 125 (2015) 579-586.
DOI: 10.1016/j.proeng.2015.11.064
Google Scholar
[11]
G. Trtnik, F. Kavčič, G.T urk, Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks, Ultrasonics. 49 (2009) 53-60.
DOI: 10.1016/j.ultras.2008.05.001
Google Scholar
[12]
H.M. Owaid, R. Hamid, M.R. Taha, Strength-ultrasonic pulse velocity relationship of thermally activated alum sludge multiple blended high performance concretes, Trans Tech Publications Ltd. 594 (2014) 521-526.
DOI: 10.4028/www.scientific.net/kem.594-595.521
Google Scholar
[13]
A.M.A. Latif, Z.M.R.A. Rasoul, Correlation between the compressive strength of concrete and ultrasonic pulse velocity: investigation and interpretation, journal of kerbala university. 7(2009) 17-29.
Google Scholar
[14]
British Standard Institution, BS EN 12350-2:2 Testing fresh concrete: Slump-test,, London (2009).
Google Scholar
[15]
British Standard Institution, BS EN 12390-3 Testing hardened concrete-Part 3: Compressive strength of test specimens,, (2002).
Google Scholar
[16]
Z. Pan, J. Zhou, X. Jiang, Y. Xu, R. Jin, J. Ma, W. Chen, Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates, Construction and Building Materials. 200 (2019) 570-577.
DOI: 10.1016/j.conbuildmat.2018.12.150
Google Scholar
[17]
S.P. Palanisamy, G. Maheswaran, M.G.L. Annaamalai, P. Vennila, Steel slag to improve the high strength of concrete, Int J Chem Tech Res. 7 (2015) 2499-2505.
Google Scholar
[18]
Q. Wang, J. Yang, P. Yan, Cementitious properties of super-fine steel slag, Powder technology. 245 (2013) 35-39.
DOI: 10.1016/j.powtec.2013.04.016
Google Scholar
[19]
Y.H. Liao, G.X. Jiang, K.J. Wang, S.A. Quanaynah, W.J. Yuan, Effect of steel slag on the hydration and strength development of calcium sulfoaluminate cement, Construction and Building Materials. 265 (2020) 120301.
DOI: 10.1016/j.conbuildmat.2020.120301
Google Scholar
[20]
N.H. Roslan, M. Ismail, Z. Abdul-Majid, S. Ghoreishiamiri, B. Muhammad, Performance of steel slag and steel sludge in concrete, Construction and building materials. 104 (2016) 16-24.
DOI: 10.1016/j.conbuildmat.2015.12.008
Google Scholar
[21]
Department of Standards Malaysia, MS EN 197-1 Cement-Part 1: Composition, specifications and conformity criteria for common cements,, (2014).
DOI: 10.3403/30205527
Google Scholar
[22]
R. Ahmmad, M.Z. Jumaat, U.J. Alengaram, S. Bahri, M. A. Rehman, H. bin Hashim, Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete, Journal of Cleaner Production. 112 (2016) 566-574.
DOI: 10.1016/j.jclepro.2015.08.043
Google Scholar
[23]
C. Thomas, J Rosales, J.A. Polanco, F. Agrela, Steel slags. InNew Trends in Eco-efficient and Recycled Concrete. 2019 169-190.
DOI: 10.1016/b978-0-08-102480-5.00007-5
Google Scholar
[24]
J. Liu, R. Guo, Applications of steel slag powder and steel slag aggregate in ultra-high performance concrete, Advances in Civil Engineering. (2018).
DOI: 10.1155/2018/1426037
Google Scholar
[25]
M.E. Parron-Rubio, F. Perez-Garcia, A. Gonzalez-Herrera, M.J. Oliveira, M.D. Rubio-Cintas, Slag substitution as a cementing material in concrete: Mechanical, physical and environmental properties, Materials. 12 (2019) 2845.
DOI: 10.3390/ma12182845
Google Scholar
[26]
Q. Wang, P. Yan, S. Han, The influence of steel slag on the hydration of cement during the hydration process of complex binder. Science China Technological Sciences, 54 (2011) 388-394.
DOI: 10.1007/s11431-010-4204-0
Google Scholar