[1]
Department of the Environment and Energy, 014 National Waste Report 2018, Blue Environ. Pty Ltd, (2018) 1–126.
Google Scholar
[2]
N. Behzad, R. Ahmad, P. Saied, S. Elmira, M.M. Bin, Challenges of solid waste management in Malaysia, Res. J. Chem. Environ., 15 (2011) 597–600.
Google Scholar
[3]
B. Weber, Malaysia: Toward A Sustainable Waste Management, Glob. Recycl., (2017) 19–20.
Google Scholar
[4]
M.I.H.M. Masirin, M.B. Ridzuan, S. Mustapha, R.A.@ M. Don, An overview of landfill management and technologies : a Malaysian case study at Ampar Tenang, Proc. 1st Natl. Semin. Environ. Dev. Sustain. Biol. Econ. Soc. Asp., (2008) 157–165.
Google Scholar
[5]
A. Sofi, Effect of waste tyre rubber on mechanical and durability properties of concrete – A review, Ain Shams Eng. J., 9 (2018) 2691–2700.
DOI: 10.1016/j.asej.2017.08.007
Google Scholar
[6]
J.D. Martínez, N. Puy, R. Murillo, T. García, M.V. Navarro, A.M. Mastral, Waste tyre pyrolysis - A review, Renew. Sustain. Energy Rev., 23 (2013) 179–213.
DOI: 10.1016/j.rser.2013.02.038
Google Scholar
[7]
W.H. Yung, L.C. Yung, L.H. Hua, A study of the durability properties of waste tire rubber applied to self-compacting concrete, Constr. Build. Mater., 41 (2013) 665–672.
DOI: 10.1016/j.conbuildmat.2012.11.019
Google Scholar
[8]
F. Moreno, M.C. Rubio, M.J. Martinez-Echevarria, Use of crumb rubber in flexible pavements, Int. J. Innov. Res. Sci. Technol., (2018) 1–8.
Google Scholar
[9]
A. Benazzouk, O. Douzane, T. Langlet, K. Mezreb, J.M. Roucoult, M. Quéneudec, Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes, Cem. Concr. Compos., 29 (2007) 732–740.
DOI: 10.1016/j.cemconcomp.2007.07.001
Google Scholar
[10]
I. Mohammadi, H. Khabbaz, K. Vessalas, In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements, Constr. Build. Mater., 71 (2014) 456–471.
DOI: 10.1016/j.conbuildmat.2014.08.085
Google Scholar
[11]
J. Svoboda, V. Vaclavik, T. Dvorsky, L. Klus, R. Zajac, The potential utilization of the rubber material after waste tire recycling, IOP Conf. Ser. Mater. Sci. Eng., 385 (2018).
DOI: 10.1088/1757-899x/385/1/012057
Google Scholar
[12]
B.S. Thomas, R. Chandra Gupta, Properties of high strength concrete containing scrap tire rubber, J. Clean. Prod., 113 (2016) 86–92.
DOI: 10.1016/j.jclepro.2015.11.019
Google Scholar
[13]
M.D.M. Samsudin, M.M. Don, Municipal solid waste management in Malaysia: Current practices, challenges and prospect, J. Teknol. (Sciences Eng., 62 (2013) 95–101.
Google Scholar
[14]
A. Omran, A. Mahmood, H.A. Aziz, Current practice of solid waste management in Malaysia and its disposal, Environ. Eng. Manag. J., 6 (2007) 295–300.
DOI: 10.30638/eemj.2007.035
Google Scholar
[15]
N.M. Al-Akhras, M.M. Smadi, Properties of tire rubber ash mortar, Cem. Concr. Compos., 26 (2004) 821–826.
DOI: 10.1016/j.cemconcomp.2004.01.004
Google Scholar
[16]
Sandra Kumar a/L Thiruvangodan, Waste tyre management in Malaysia, Sch. Grad. Stud. Univeristi Putra Malaysia, (2006) 1–297.
Google Scholar
[17]
M. Chauhan, H. Sood, C. Engineering, Rubber Modified Concrete- A Green Approach For Sustainable Infrastructural Development, Int. Res. J. Eng. Technol., 4 (2017) 973–978.
Google Scholar
[18]
F.M. Silva, E.J.P. Miranda, J.M.C. Dos Santos, L.A. Gachet-Barbosa, A.E. Gomes, R.C.C. Lintz, The use of tire rubber in the production of high-performance concrete, Ceramica, 65 (2019) 110–114.
DOI: 10.1590/0366-6913201965s12598
Google Scholar
[19]
B.S. Thomas, R.C. Gupta, P. Mehra, S. Kumar, Performance of high strength rubberized concrete in aggressive environment, Constr. Build. Mater., 83 (2015) 320–326.
DOI: 10.1016/j.conbuildmat.2015.03.012
Google Scholar
[20]
S. Guo, Q. Dai, R. Si, X. Sun, C. Lu, Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire, J. Clean. Prod., 148 (2017) 681–689.
DOI: 10.1016/j.jclepro.2017.02.046
Google Scholar
[21]
Z. Rahman, Study on Waste Rubber Tyre in Concrete for Eco-friendly Environment, Eng. Technol. India, 1 (2017) 167–176.
Google Scholar
[22]
O. Youssf, J.E. Mills, R. Hassanli, Assessment of the mechanical performance of crumb rubber concrete, Constr. Build. Mater., 125 (2016) 175–183.
DOI: 10.1016/j.conbuildmat.2016.08.040
Google Scholar
[23]
E. Sodupe-Ortega, E. Fraile-Garcia, J. Ferreiro-Cabello, A. Sanz-Garcia, Evaluation of crumb rubber as aggregate for automated manufacturing of rubberized long hollow blocks and bricks, Constr. Build. Mater., 106 (2016) 305–316.
DOI: 10.1016/j.conbuildmat.2015.12.131
Google Scholar
[24]
F. Azevedo, F. Pacheco-Torgal, C. Jesus, J.L. Barroso De Aguiar, A.F. Camões, Properties and durability of HPC with tyre rubber wastes, Constr. Build. Mater., 34 (2012) 186–191.
DOI: 10.1016/j.conbuildmat.2012.02.062
Google Scholar
[25]
A. Siddika, M.A. Al Mamun, R. Alyousef, Y.H.M. Amran, F. Aslani, H. Alabduljabbar, Properties and utilizations of waste tire rubber in concrete: A review, Constr. Build. Mater., 224 (2019) 711–731.
DOI: 10.1016/j.conbuildmat.2019.07.108
Google Scholar
[26]
R. Roychand, R.J. Gravina, Y. Zhuge, X. Ma, O. Youssf, J.E. Mills, A comprehensive review on the mechanical properties of waste tire rubber concrete, Constr. Build. Mater., 237 (2020) 117651.
DOI: 10.1016/j.conbuildmat.2019.117651
Google Scholar
[27]
R. Si, S. Guo, Q. Dai, Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles, Constr. Build. Mater., 153 (2017) 496–505.
DOI: 10.1016/j.conbuildmat.2017.07.085
Google Scholar
[28]
M.M. Rahman, M. Usman, A.A. Al-Ghalib, Fundamental properties of rubber modified self-compacting concrete (RMSCC), Constr. Build. Mater., 36 (2012) 630–637.
DOI: 10.1016/j.conbuildmat.2012.10.006
Google Scholar
[29]
A. Abdelmonem, M.S. El-Feky, E.S.A.R. Nasr, M. Kohail, Performance of high strength concrete containing recycled rubber, Constr. Build. Mater., 227 (2019) 116660.
DOI: 10.1016/j.conbuildmat.2019.08.041
Google Scholar
[30]
N.N. Gerges, C.A. Issa, S.A. Fawaz, Rubber concrete: Mechanical and dynamical properties, Case Stud. Constr. Mater., 9 (2018) e00184.
DOI: 10.1016/j.cscm.2018.e00184
Google Scholar
[31]
B. Kondraivendhan, B. Bhattacharjee, Flow behavior and strength for fly ash blended cement paste and mortar, Int. J. Sustain. Built Environ., 4 (2015) 270–277.
DOI: 10.1016/j.ijsbe.2015.09.001
Google Scholar
[32]
A.M. Rashad, A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, Int. J. Sustain. Built Environ., 5 (2016) 46–82.
DOI: 10.1016/j.ijsbe.2015.11.003
Google Scholar
[33]
F.F. Jirjees, S.M. Maruf, A.R.A. Rahman, K.H. Younis, Behaviour of Concrete Incorporating Tirederived Crumb Rubber Aggregate, Int. J. Civ. Eng. Technol., 10 (2019) 3149–3157.
Google Scholar
[34]
J. de Brito, F. Agrela, eds., New Trends in Eco-efficient and Recycled Concrete, Woodhead Publishing, (2019).
Google Scholar
[35]
S.B. Singh, P. Munjal, N. Thammishetti, Influence of Water-Cement Ratio on Mechanical Properties of Cement Mortar, UKIERI Concr. Congr., (2015) 221–231.
Google Scholar
[36]
G. Skripkiunas, A. Grinys, K. Miškinis, Damping properties of concrete with rubber waste additives, Mater. Sci., 13 (2007) 266–272.
Google Scholar
[37]
F.N.A. Farah Nora, S.M. Bida, N.A.M. Nasir, M.S. Jaafar, Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb, Constr. Build. Mater., 73 (2014) 544–550.
DOI: 10.1016/j.conbuildmat.2014.09.100
Google Scholar
[38]
H. Su, J. Yang, T.C. Ling, G.S. Ghataora, S. Dirar, Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes, J. Clean. Prod., 91 (2015) 288–296.
DOI: 10.1016/j.jclepro.2014.12.022
Google Scholar
[39]
S. Kumar, B. Thomas, Resistance To Acid Attack of Cement Concrete, Ukeiri, (2015).
Google Scholar
[40]
C. Nagarajan, P. Shanumugasundaram, S.R. Anmeeganathan, Properties of high strength concrete containing surface-modified crumb rubber, Gradjevinar, 71 (2019) 579–588.
Google Scholar