[1]
Kamaruddin, F. A. B., Huat, B. B. K., Anggraini, V., & Nahazanan, H. (2019). Modified Natural Fiber on soil stabilization with lime and alkaline activation treated Marine Clay. International Journal of GEOMATE, 16(58), 69–75.
DOI: 10.21660/2019.58.8156
Google Scholar
[2]
Peter, L., Jayasree, P. K., Balan, K., & Raj, S. A. (2016). Laboratory Investigation in the Improvement of Subgrade Characteristics of Expansive Soil Stabilised with Coir Waste. Transportation Research Procedia, 17(December 2014), 558–566.
DOI: 10.1016/j.trpro.2016.11.110
Google Scholar
[3]
Suneel, M., Kwon, J., Im, J. C., & Jeon, C. W. (2010). Long-term consolidation and strength behavior of marine clay improved with fly ash. Marine Georesources and Geotechnology, 28(2), 105–114.
DOI: 10.1080/10641190903479031
Google Scholar
[4]
Preetham, H. K., & Nayak, S. (2019). Geotechnical Investigations on Marine Clay Stabilized Using Granulated Blast Furnace Slag and Cement. International Journal of Geosynthetics and Ground Engineering, 5(4), 1–12.
DOI: 10.1007/s40891-019-0179-5
Google Scholar
[5]
Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448–453.
DOI: 10.1016/j.conbuildmat.2004.08.001
Google Scholar
[6]
Nazil Ural The Importance of Clay in Geotechnical Engineering Utilization of Clay in Industrial and Medical Applications (2017).
Google Scholar
[7]
Aldeeky, H., & Al Hattamleh, O. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil. Advan Studies on the establishment of different applications and practices in Civil Engineering, (2017).
DOI: 10.1155/2017/9230279
Google Scholar
[8]
Alshameri, B., Madun, A., & Bakar, I. (2017). Assessment on the effect of fine content and moisture content towards shear strength. Geotechnical Engineering, 48(4), 76–86.
Google Scholar
[9]
Jiang, Y., Ling, T. C., Shi, C., & Pan, S. Y. (2018). Characteristics of steel slags and their use in cement and concrete-A review. Resources, Conservation and Recycling, 136 (December 2017), 187–197.
DOI: 10.1016/j.resconrec.2018.04.023
Google Scholar
[10]
Elkady, T. Y. (2016). The effect of curing conditions on the unconfined compression strength of lime-treated expansive soils. Road Materials and Pavement Design, 17(1).
DOI: 10.1080/14680629.2015.1062409
Google Scholar
[11]
Jiang, X., Huang, Z., Ma, F., & Luo, X. (2019). Analysis of Strength Development and Soil–Water Characteristics of Rice Husk Ash–Lime Stabilized Soft Soil. Materials, 12(23).
DOI: 10.3390/ma12233873
Google Scholar
[12]
Kolias, S., Kasselouri-Rigopoulou, V., & Karahalios, A. (2005). Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301–313.
DOI: 10.1016/j.cemconcomp.2004.02.019
Google Scholar
[13]
Amadi, A. A., & Osu, A. S. (2018). Effect of curing time on strength development in black cotton soil – Quarry fines composite stabilized with cement kiln dust (CKD). Journal of King Saud University - Engineering Sciences, 30(4), 305–312.
DOI: 10.1016/j.jksues.2016.04.001
Google Scholar
[14]
Kiran B N M, & Prasad D V S. (2016). Stabilization of Marine Clay Using Ferric Chloride and Quarry Dust. International Journal of Latest Trends in Engineering and Technology (IJLTET), 6(3), 609–615.
Google Scholar
[15]
Rai, P., Pei, H., Meng, F., & Ahmad, M. (2020). Utilization of Marble Powder and Magnesium Phosphate Cement for Improving the Engineering Characteristics of Soil. International Journal of Geosynthetics and Ground Engineering, 6(2).
DOI: 10.1007/s40891-020-00212-3
Google Scholar
[16]
Amin, M. S., El-Gamal, S. M. A., Abo-El-Enein, S. A., El-Hosiny, F. I., & Ramadan, M. (2015). Physico-chemical characteristics of blended cement pastes containing electric arc furnace slag with and without silica fume. HBRC Journal, 11(3).
DOI: 10.1016/j.hbrcj.2014.07.002
Google Scholar
[17]
Hekal, E. E., Abo-El-Enein, S. A., El-Korashy, S. A., Megahed, G. M., & El-Sayed, T. M. (2013). Hydration characteristics of Portland cement – Electric arc furnace slag blends. HBRC Journal, 9(2), 118–124.
DOI: 10.1016/j.hbrcj.2013.05.006
Google Scholar
[18]
Wang, Q., Yang, J., & Yan, P. (2013). Cementitious properties of super-fine steel slag. Powder Technology, 245, 35–39.
DOI: 10.1016/j.powtec.2013.04.016
Google Scholar
[19]
Kriskova, L., Pontikes, Y., Cizer, Ö., Mertens, G., Veulemans, W., Geysen, D., … Blanpain, B. (2012). Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cement and Concrete Research, 42(6), 778–788.
DOI: 10.1016/j.cemconres.2012.02.016
Google Scholar
[20]
Li, Z., Zhao, S., Zhao, X., & He, T. (2013). Cementitious property modification of basic oxygen furnace steel slag. Construction and Building Materials, 48, 575–579.
DOI: 10.1016/j.conbuildmat.2013.07.068
Google Scholar