[1]
A. Omran, A. Mahmood, H.A. Aziz, Current practice of solid waste management in Malaysia and its disposal, Environ. Eng. Manag. J., 6 (2007) 295–300.
DOI: 10.30638/eemj.2007.035
Google Scholar
[2]
IA. Jereme, C. Siwar, M.M. Alam, Waste Recycling in Malaysia : Transition from Developing to Developed Country Waste recycling in Malaysia : Transition from developing to developed country, Indian J. Educ. Inf. Manag., 4 (2014) 1–14.
DOI: 10.31235/osf.io/xgf8k
Google Scholar
[3]
M.D.M. Samsudin, M.M. Don, Municipal solid waste management in Malaysia: Current practices, challenges and prospect, J. Teknol. (Sciences Eng., 62 (2013) 95–101.
Google Scholar
[4]
H.-W. Windhorst, B. Grabkowsky, A. Wilke, Atlas of the Global Egg Industry, (2014).
Google Scholar
[5]
P.L. Kiew, C.K. Ang, K.W. Tan, S.X. Yap, Chicken eggshell as biosorbent: Artificial intelligence as promising approach in optimizing study, MATEC Web Conf., 60 (2016) 1–5.
DOI: 10.1051/matecconf/20166001007
Google Scholar
[6]
Jayasankar.R, Mahindran.N, Langovan.R, Studies on Concrete using Fly Ash , Rice Husk Ash and Egg Shell, Journal, Int. Civil, O F Eng. Struct., 1 (2010) 362–372.
Google Scholar
[7]
A. Sofi, Effect of waste tyre rubber on mechanical and durability properties of concrete – A review, Ain Shams Eng. J., 9 (2018) 2691–2700.
DOI: 10.1016/j.asej.2017.08.007
Google Scholar
[8]
J.D. Martínez, N. Puy, R. Murillo, T. García, M.V. Navarro, A.M. Mastral, Waste tyre pyrolysis - A review, Renew. Sustain. Energy Rev., 23 (2013) 179–213.
DOI: 10.1016/j.rser.2013.02.038
Google Scholar
[9]
J. Svoboda, V. Vaclavik, T. Dvorsky, L. Klus, R. Zajac, The potential utilization of the rubber material after waste tire recycling, IOP Conf. Ser. Mater. Sci. Eng., 385 (2018).
DOI: 10.1088/1757-899x/385/1/012057
Google Scholar
[10]
B.S. Thomas, R. Chandra Gupta, Properties of high strength concrete containing scrap tire rubber, J. Clean. Prod., 113 (2016) 86–92.
DOI: 10.1016/j.jclepro.2015.11.019
Google Scholar
[11]
E. Niya, S. Divya, An Experimental Study on Strength of Concrete by Partial Replacement of Cement by Egg Shell Powder and Aggregates by Crumb Rubber, Int. J. Eng. Dev. Res., 6 (2015) 131–138.
Google Scholar
[12]
N.M. Al-Akhras, M.M. Smadi, Properties of tire rubber ash mortar, Cem. Concr. Compos., 26 (2004) 821–826.
DOI: 10.1016/j.cemconcomp.2004.01.004
Google Scholar
[13]
Sandra Kumar a/L Thiruvangodan, Waste tyre management in Malaysia, Sch. Grad. Stud. Univeristi Putra Malaysia, (2006) 1–297.
Google Scholar
[14]
H. Faridi, A. Arabhosseini, Application of eggshell wastes as valuable and utilizable products: A review, Res. Agric. Eng., 64 (2018) 104–114.
DOI: 10.17221/6/2017-rae
Google Scholar
[15]
J. et al., Eggshell powder as partial cement replacement and its effect on the workability and compressive strength of concrete, Int. J. Adv. Appl. Sci., 6 (2019) 71–75.
DOI: 10.21833/ijaas.2019.09.011
Google Scholar
[16]
H. Bhaskaran, L. John, P.M. Neethu, T. Sebastian, Study on Egg Shell Concrete, Int. J. Eng. Res. Technol., 4 (2016) 4–6.
Google Scholar
[17]
V. Chandrasekaran, Experimental Investigation of Partial Replacement of Cement with Glass Powder and Eggshell Powder Ash in Concrete, Civ. Eng. Res. J., 5 (2018) 1–9.
DOI: 10.19080/cerj.2018.05.555662
Google Scholar
[18]
M.O.A Mtallib, A. Rabiu, Effects of Eggshells Ash ( Esa ), Eff. Eggshells Ash Setting Time Cem., 28 No.2 (2009) 29–38.
Google Scholar
[19]
C. Kannam Naidu, C. Vasudeva Rao, G. Venkata Rao, A.Y.D.T. Akhilesh, Experimental study on m30 grade concrete with partial replacement of cement with egg shell powder, Int. J. Civ. Eng. Technol., 9 (2018) 575–583.
Google Scholar
[20]
S.I. Doh, S.C. Chin, Eggshell powder: potential filler in concrete, 8th MUCET, (2014) 10–11.
Google Scholar
[21]
R. Al-Safy, R.A. Al-Safy, Experimental Investigation on Properties of Cement Mortar Incorporating Eggshell Powder, J. Eng. Dev., 19 (2015) 1999–8716.
Google Scholar
[22]
A. Kanaka Ramya, A. V. Phani Manoj, G.T.N. Veerendra, P. Kodanda Rama Rao, Strength and durability properties of concrete with partially replaced cement with egg shell powder and fine aggregate with quarry dust, Int. J. Innov. Technol. Explor. Eng., 8 (2019) 4585–4590.
DOI: 10.35940/ijitee.j9134.0881019
Google Scholar
[23]
N. Parthasarathi, M. Prakash, K.S. Satyanarayanan, Experimental study on partial replacement of cement with egg shell powder and silica fume, Rasayan J. Chem., 10 (2017) 442–449.
DOI: 10.7324/rjc.2017.1021689
Google Scholar
[24]
Dhanalakshmi M, Dr Sowmya N J, Dr Chandrashekar A, A Comparative Study on Egg Shell Concrete with Partial Replacement of Cement by Fly Ash, Int. J. Eng. Res., V4 (2015) 12–20.
DOI: 10.17577/ijertv4is051303
Google Scholar
[25]
B.K. V Ramasamy, Feasibility Study on Eggshell Powder Concrete ( ESP Concrete ), Int. J. Sci. Res. Dev., 6 (2019) 732–734.
Google Scholar
[26]
F.M. Silva, E.J.P. Miranda, J.M.C. Dos Santos, L.A. Gachet-Barbosa, A.E. Gomes, R.C.C. Lintz, The use of tire rubber in the production of high-performance concrete, Ceramica, 65 (2019) 110–114.
DOI: 10.1590/0366-6913201965s12598
Google Scholar
[27]
B.S. Thomas, R.C. Gupta, P. Mehra, S. Kumar, Performance of high strength rubberized concrete in aggressive environment, Constr. Build. Mater., 83 (2015) 320–326.
DOI: 10.1016/j.conbuildmat.2015.03.012
Google Scholar
[28]
S. Guo, Q. Dai, R. Si, X. Sun, C. Lu, Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire, J. Clean. Prod., 148 (2017) 681–689.
DOI: 10.1016/j.jclepro.2017.02.046
Google Scholar
[29]
Z. Rahman, Study on Waste Rubber Tyre in Concrete for Eco-friendly Environment, Eng. Technol. India, 1 (2017) 167–176.
Google Scholar
[30]
R. Bušić, I. Miličević, T.K. Šipoš, K. Strukar, Recycled rubber as an aggregate replacement in self-compacting concrete-literature overview, Materials (Basel)., 11 (2018).
DOI: 10.3390/ma11091729
Google Scholar
[31]
Y. Suma, C. Nithin, Analysis Of Concrete By Partial Replacement Of Coarse Aggregate With Crumb Rubber, Int. J. Eng. Appl. Sci., 6 (2019) 14–16.
Google Scholar
[32]
A.M. Rashad, A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, Int. J. Sustain. Built Environ., 5 (2016) 46–82.
DOI: 10.1016/j.ijsbe.2015.11.003
Google Scholar
[33]
A. Abdelmonem, M.S. El-Feky, E.S.A.R. Nasr, M. Kohail, Performance of high strength concrete containing recycled rubber, Constr. Build. Mater., 227 (2019) 116660.
DOI: 10.1016/j.conbuildmat.2019.08.041
Google Scholar
[34]
B.S. Thomas, R.C. Gupta, V.J. Panicker, Recycling of waste tire rubber as aggregate in concrete: Durability-related performance, J. Clean. Prod., 112 (2016) 504–513.
DOI: 10.1016/j.jclepro.2015.08.046
Google Scholar
[35]
Bs En 933-1:1996 - Tests for Geometrical Properties of Aggregates, 3 (1997).
Google Scholar
[36]
G. Mishra, N. Pathak, Strength and Durability study on Standard Concrete with Partial Replacement of Cement and Sand using Egg Shell Powder and Earthenware Aggregates for Sustainable Construction, Int. J. Res. Dev. Technol., 8 (2017) 360–371.
Google Scholar
[37]
M. Balamurugan, R. Santhosh, Influence of eggshell ash on the properties of cement, Imp. J. Interdiscip. Res., 3 (2017) 160–164.
Google Scholar
[38]
R. Si, S. Guo, Q. Dai, Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles, Constr. Build. Mater., 153 (2017) 496–505.
DOI: 10.1016/j.conbuildmat.2017.07.085
Google Scholar
[39]
A. Siddika, M.A. Al Mamun, R. Alyousef, Y.H.M. Amran, F. Aslani, H. Alabduljabbar, Properties and utilizations of waste tire rubber in concrete: A review, Constr. Build. Mater., 224 (2019) 711–731.
DOI: 10.1016/j.conbuildmat.2019.07.108
Google Scholar
[40]
BS 1881-116 Method for Determination of Compressive Strength of Concrete Cubes, (1991).
Google Scholar
[41]
BS EN 12390-5:2019 Testing hardened concrete Flexural strength of test specimens, (2019).
Google Scholar
[42]
A.A. Jhatial, W.I. Goh, N. Mohamad, S. Sohu, M.T. Lakhiar, Utilization of Palm Oil Fuel Ash and Eggshell Powder as Partial Cement Replacement - A Review, Civ. Eng. J., 4 (2018) (1977).
DOI: 10.28991/cej-03091131
Google Scholar
[43]
I.T. Yusuf, Y.A. Jimoh, W.A. Salami, An appropriate relationship between flexural strength and compressive strength of palm kernel shell conc rete, Alexandria Eng. J., 55 (2016) 1553–1562.
DOI: 10.1016/j.aej.2016.04.008
Google Scholar
[44]
W. Yao, S. Jiang, W. Fei, T. Cai, Correlation between the Compressive, Tensile Strength of Old Concrete under Marine Environment and Prediction of Long-Term Strength, Adv. Mater. Sci. Eng., 2017 (2017).
DOI: 10.1155/2017/8251842
Google Scholar
[45]
N.K.A. valli, M.P. selvi, Relationship between Compressive Strength and Flexural Strength of Polyester Fiber Reinforced Concrete, Int. J. Eng. Trends Technol., 45 (2017) 158–160.
DOI: 10.14445/22315381/ijett-v45p234
Google Scholar
[46]
K. Connor, S. Cortesa, S. Issagaliyeva, A. Meunier, O. Bijaisoradat, N. Kongkatigumjorn, K. Wattanavit, Developing a sustainable waste tire management strategy for Thailand, Worcester, Massachusetts Worcester Polytech. Inst., (2013).
Google Scholar
[47]
Y.Y. Tan, S.I. Doh, S.C. Chin, Eggshell as a partial cement replacement in concrete development, Mag. Concr. Res., 70 (2018) 662–670.
DOI: 10.1680/jmacr.17.00003
Google Scholar
[48]
BS 6349 - Maritime works, (n.d.).
Google Scholar
[49]
F. Ujin, K.S. Ali, Z.Y.H. Harith, Influence of addition eggshells ash as partial replacement cement on the durability of concrete, J. Eng. Appl. Sci., 13 (2018) 809–812.
Google Scholar
[50]
J.T. GORE, The role of calcium carbonate in dental caries, J. Am. Dent. Assoc., 47 (1953) 180–189.
Google Scholar
[51]
T.G. Nijland, J.A. Larbi, Microscopic examination of deteriorated concrete, in: Non-Destructive Eval. Reinf. Concr. Struct., 2010: p.137–179.
DOI: 10.1533/9781845699536.2.137
Google Scholar
[52]
T.Y. Yu, D.S. Ing, C.S. Choo, The Effect of Different Curing Methods on the Compressive Strength of Eggshell Concrete, Indian J. Sci. Technol., 10 (2017) 1–4.
Google Scholar