Mechanical Properties and Thermal Analysis of Salago and Coir Hybrid Fiber Reinforced Epoxy Resin Composites

Article Preview

Abstract:

The utilization of natural fibers in composites continues to increase due to their advantages over the synthetic fiber materials especially in terms of environmental impact and costs. One of the techniques that can be used to further enhance the properties of these natural fiber reinforced composites is through fiber hybridization. In this study, salago and coir fibers were reinforced in the epoxy resin to form a new hybrid composite. The salago to coir fiber weight ratios considered in the fiber hybridization were 3:1, 1:1 and 1:3. The performance of these hybrid fiber composites were compared to pure coir fiber composite and salago fiber composite in terms of impact strength, tensile properties and flexural properties. Among the hybrid fiber composites, the fiber weight ratio of 3:1 has the highest tensile strength (33.8 MPa), tensile modulus (3.57 GPa), flexural strength (44.2 MPa) and impact strength (42.3 J/m). It was found out that the addition of coir to this hybrid fiber composite improves the tensile strength by about 21.1 % as compared to the salago fiber composite. On the other hand, the addition of salago fiber to this hybrid fiber composite resulted to a higher tensile modulus (43.4 %) and impact strength (25.5 %) than the coir fiber composite. Moreover, the thermal analysis of the composites revealed a peak degradation temperature at around 370 °C which is associated to the decomposition of cellulose, hemicellulose and epoxy resin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R. Benin, S. Kannan, R.J. Bright and A.J. Moses: Mater. Today Proc. Vol. 33 (2020), pp.798-805.

Google Scholar

[2] K.L. Pickering, M.G. Aruan Efendy and T.M. Le: Compos. Part A Appl. Sci. Manuf. Vol. 83 (2016), pp.98-112.

Google Scholar

[3] M. Li, Y. Pu, V.M. Thomas, C.G. Yoo, S. Ozcan, Y. Deng, K. Nelson and A.J. Ragauskas: Compos. B. Eng. Vol. 200 (2020), 108254.

Google Scholar

[4] S. Vigneshwaran, R. Sundarakannan, K.M. John, R.D.J. Johnson, K.A. Prasath, S. Ajith, V. Arumugaprabu and M. Uthayakumar: J. Clean. Prod. Vol. 277 (2020), 124109.

DOI: 10.1016/j.jclepro.2020.124109

Google Scholar

[5] M. Jawaid and H.P.S. Abdul Khalil: Carbohydr. Polym. Vol. 86 (2011), pp.1-18.

Google Scholar

[6] Y. Singh, J. Singh, S. Sharma, T.D. Lam and D.N. Nguyen: J. Mater. Res. Technol. Vol. 9 (2020), pp.15593-15603.

Google Scholar

[7] S. Bansal, M. Ramachandran and P. Raichurkar: Mater. Today Proc. Vol. 4 (2017), pp.3182-3187.

Google Scholar

[8] N. Prasad, V.K. Agarwal and S. Sinha: Sci. Eng. Compos. Mater. Vol. 25 (2018), pp.133-141.

Google Scholar

[9] M. Pouriman, A. Dahresobh, A.R. Caparanga, M. Moradipour and M. Mehrpooya: J. Appl. Polym. Sci. Vol. 135 (2018), 46479.

DOI: 10.1002/app.46479

Google Scholar

[10] J.D. Lopena and J.C. Millare: IOP conf. ser., Mater. sci. eng. Vol. 947 (2020), 012010.

Google Scholar

[11] V. Fiore, T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino and A. Valenza: Compos. B. Eng. Vol. 85 (2016), pp.150-160.

Google Scholar

[12] N.S. Balaji, S. Chockalingam, S. Ashokraj, D. Simson and S. Jayabal: Mater. Today Proc. Vol. 27 (2020), pp.2048-2051.

DOI: 10.1016/j.matpr.2019.09.056

Google Scholar

[13] S. Vijayakumar, T. Nilavarasan, R. Usharani and L. Karunamoorthy: Procedia Mater. Sci. Vol. 5 (2014), pp.2330-2337.

Google Scholar

[14] I.M. De Rosa, C. Santulli and F. Sarasini: Mater. Des. Vol. 31 (2010), pp.2397-2405.

Google Scholar

[15] M. Boopalan, M. Niranjanaa and M.J. Umapathy: Compos. B. Eng. Vol. 51 (2013), pp.54-57.

Google Scholar

[16] W. Sutrisno, M. Rahayu and D.R. Adhika: Fibers Vol. 8 (2020), 4.

Google Scholar