Fatigue Life of Ni-Based Single Crystal Super-Alloy Specimen with Single Hole

Article Preview

Abstract:

A method of predicting the fatigue life under multiaxis loads based on the Paris law and EIFS was proposed. And the fatigue life under different loading stress and stress ratio were investigated. The results show that when the loading stress increased from 450~800 MPa, the fatigue life decreased from 6762379 to 10056, as well as when the stress ratio increased from 0.1~1, the fatigue life increased from 6762379 to 14932368. It was validated by test eventually. And the fatigue life model presented here agrees well with test results. It is significant to the prediction of turbine of Ni-based single crystal super-alloy material with filming hole.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-16

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.Z. Wang, D.S. Liu, Z.X. Wen, Z.F. Yue. Tension/compression asymmetry of [001] single crystal nickel-based super-alloy DD6 during low cycle fatigue[J]. Materials Science and Engineering A. 2014;593: 31-37.

DOI: 10.1016/j.msea.2013.09.013

Google Scholar

[2] T. Zhang, P.E. McHugh, S.B. Leen, Finite element implementation of multi-axis continuum damage mechanics for plain and fretting fatigue[J]. International Journal of Fatigue. 2012; 44(11):260-272.

DOI: 10.1016/j.ijfatigue.2012.04.011

Google Scholar

[3] Mykola Bobyr, Holm Altenbach, Oleksandr Khalimon, On the application of the continuum damage mechanics to multi-axis low-cyclic damage[J]. Archive of Applied Mechanics. 2015; 85(4):455-468.

DOI: 10.1007/s00419-014-0922-2

Google Scholar

[4] T. L. Anderson. Fracture mechanics:Fundamentals and applications[M].(2017).

Google Scholar

[5] Yang Moucun, Nie Hong. Analysis Approach to Durability Based on Material Initial Fatigue Quality and S-N Curve[J]. Chinese Journal of Aeronautics. 2007; 20:518-523.

DOI: 10.1016/s1000-9361(07)60076-4

Google Scholar

[6] M. Okazaki, M. Sakaguchi. Thermo-mechanical fatigue failure of a single crystal Ni-based single crystal super-alloy[J]. International Journal of Fatigue. 2008;30: 318–323.

DOI: 10.1016/j.ijfatigue.2007.01.044

Google Scholar

[7] L. MOLENT. A review of equivalent pre-crack sizes in aluminium alloy 7050-T7451[J]. Fatigue Fract Engng Mater Struct. 2014; 37:1055–1074.

DOI: 10.1111/ffe.12214

Google Scholar

[8] Manson, S.S. Behavior of materials under conditions of thermal stress[J]. National Advisory Commission on Aeronautics. 1954; Report 1170.

Google Scholar

[9] Coffin L.F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers. 1954;76: 931-950.

DOI: 10.1115/1.4015021

Google Scholar

[10] A.R. Shahani, H. Moayeri Kashani. Assessment of equivalent initial flaw size estimation methods in fatigue life prediction using compact tension specimen tests[J].Engineering Fracture Mechanics. 2013;99 : 48–61.

DOI: 10.1016/j.engfracmech.2013.01.007

Google Scholar

[11] Andrew Makeev, Yuri Nikishkov, Erian Armanios. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models[J].International Journal of Fatigue. 2007;29 :141-145.

DOI: 10.1016/j.ijfatigue.2006.01.018

Google Scholar

[12] J.A.F.O. Correia, S. Blasón, A.M.P. De Jesus, et al.. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model[J]. Engineering Failure Analysis .2016;69 :15–28.

DOI: 10.1016/j.engfailanal.2016.04.003

Google Scholar

[13] Shankar Sankararaman, You Ling, Chris Shantz, et al.. Inference of equivalent initial flflaw size under multiple sources of uncertainty[J]. International Journal of Fatigue. 2010;32 :376–381.

DOI: 10.1016/j.ijfatigue.2010.06.008

Google Scholar

[14] W. Steven Johnson.The history, logic and uses of the Equivalent Initial Flaw Size approach to total fatigue life prediction[J]. Fatigue 2010: Procedia Engineering. 2010; 2:47–58.

DOI: 10.1016/j.proeng.2010.03.005

Google Scholar

[15] Zizi Lu, Yibing Xiang, Yongming Liu. Crack growth-based fatigue-life prediction using an equivalent initial flaw model. Part II: multi-axis loading[J]. International Journal of Fatigue. 2010; 32: 376–381.

DOI: 10.1016/j.ijfatigue.2009.07.013

Google Scholar

[16] Yanqin Shangguan, Xian Wang, Yueming Li. Investigation on the mixing mechanism of single-jet film cooling with various blowing ratios based on hybrid thermal lattice Boltzmann method. International Journal of Heat and Mass Transfer. 2016;97(1): 880-890.

DOI: 10.1016/j.ijheatmasstransfer.2016.02.089

Google Scholar

[17] Wen, Zhixun; Zhang, Dongxu; Li, Songwei. Anisotropic creep damage and fracture mechanism of nickel-base single crystal super-alloy under multi-axis stress[J]. JOURNAL OF ALLOYS AND COMPOUNDS.2017; 692: 301-312.

DOI: 10.1016/j.jallcom.2016.09.052

Google Scholar

[18] Paris PC, Erdogan F. A critical analysis of crack propagation laws. Transactions of The ASME. Series E: Journal of Basic Engineering. 1963;85: 528-534.

DOI: 10.1115/1.3656902

Google Scholar

[19] Mieczysław Szata, Grzegorz Lesiuk. Algorithms for the estimation of fatigue crack growth using energy method[J]. Archives Of Civil And Mechanical Engineering. 2009; IX:119-134.

DOI: 10.1016/s1644-9665(12)60045-4

Google Scholar

[20] Plank R, Kuhn G. Fatigue crack propagation under non-proportional mixed-mode loading . Engng Fract Mech. 1999; 62:203–29.

DOI: 10.1016/s0013-7944(98)00097-6

Google Scholar

[21] Yibing Xiang, Zizi Lu, Yongming Liu. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: Uniaxial loading[J].International Journal of Fatigue. 2010;32 :341–349.

DOI: 10.1016/j.ijfatigue.2009.07.011

Google Scholar

[22] Shankar Sankararaman, You Ling, Sankaran Mahadevan.Statistical inference of equivalent initial flaw size with complicated structural geometry and multi-axis variable amplitude loading[J].International Journal of Fatigue.2010; 32: 1689–1700.

DOI: 10.1016/j.ijfatigue.2010.03.012

Google Scholar

[23] Liu Y, Mahadevan S. A unified multi-axis fatigue damage model for isotropic and anisotropic materials. Int J Fatigue. 2007;29(2):347–59.

DOI: 10.1016/j.ijfatigue.2006.03.011

Google Scholar

[24] Liu Y, Mahadevan S. multi-axis high-cycle fatigue criterion and life prediction for metals. Int J Fatigue. 2005;27(7):790–800.

DOI: 10.1016/j.ijfatigue.2005.01.003

Google Scholar

[25] Liu Y, Mahadevan S. Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading. Eng Fract Mech .2007;74(3):332–45.

DOI: 10.1016/j.engfracmech.2006.06.003

Google Scholar

[26] Yongming Liu, Sankaran Mahadevan.Probabilistic fatigue life prediction using an equivalent initial flaw size distribution[J].International Journal of Fatigue.2009;31:476–487.

DOI: 10.1016/j.ijfatigue.2008.06.005

Google Scholar

[27] Pedro M.G.P. Moreira, Paulo F.P. de Matos, Paulo M.S.T. de Castro.Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens[J]. Theoretical and Applied Fracture Mechanics.2005;43 :89–99.

DOI: 10.1016/j.tafmec.2004.12.005

Google Scholar

[28] J. C. Newman, Jr. and I. S. Raju. Stress-intensity factor equations for cracks in three-imensional finite bodies[J]. NASA Langley Reseach Center, Hampton. Va 23681:1-50.

Google Scholar

[29] Qiang Wang, Wei Zhang, Shan Jiang.Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size[J]. Materials. 2015; 8: 7145-7160.

DOI: 10.3390/ma8105367

Google Scholar