In Situ Synthesis of SiO2 Nanoparticles by Sol-Gel Method on Cotton Fabrics and Investigation of their Physical and Chemical Properties

Article Preview

Abstract:

In this paper, the sol-gel method was used for in-situ synthesis of SiO2 nanoparticles (NPs) on cotton fabrics with tetraethyl orthosilicate (TEOS) in the presence of acid and alkaline indicators. The samples were characterized using by (X-ray diffraction) XRD, (scanning electron Microscopy) SEM, (Inductively coupled plasma) ICP, water drop test and also the flame retardant properties were studied by char yield. The SEM images showed that the nanoparticles are spherical in shape and the acidity or alkalinity of the medium has an effect on the formation of particles. The XRD patterns showed the typical diffraction of amorphous SiO2 (Si-O short-order structure), also ICP analysis showed that by washing the fabrics, the nanoparticles are still present on the fabric, and this indicated the stability of the washing of the fabrics impregnated with the nanoparticles. By in-situ synthesis of SiO2 nanoparticles, the flame retardant properties have been improved significantly and the amount of residual char was increased and samples were observed to be hydrophilic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-42

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Fleddermann, J. Susewind, H. Peuschel, M. Koch, I. Tavernaro, A. Kraegeloh., Distribution of SiO2 nanoparticles in 3D liver microtissues, Int. J. Nanomedicine, 14 (2019)1411–1431.

DOI: 10.2147/ijn.s189888

Google Scholar

[2] X. Ding, K. Yu, Y. Jiang, H.B., H. Zhang and Z. Wang, A novel approach to the synthesis of hollow silica nanoparticles, Mater. Lett., 58 (27-28) (2004) 3618-3621.

DOI: 10.1016/j.matlet.2004.07.008

Google Scholar

[3] O. M. Sadek, S. M. Reda, R. K. Al-Bilali, Preparation and characterization of silica and clay-silica core-shell nanoparticles using sol-gel method, Adv. Nanopart., 2 (2013) 165-175.

DOI: 10.4236/anp.2013.22025

Google Scholar

[4] D. Zahao, P. Yang, Q. Huo, B.F. Chemelka, G.D. Stucky, Topological construction of mesoporous materials, Curr. Opin. Solid State Mater. Sci., 3 (1) (1998) 111-121.

Google Scholar

[5] K. Okada, A. Shimai, T. Takei, S. Hayashi, A. Yasumori, K.J.D. Mac-Kenzie, Preparation of microporous silica from metakaolinite by selective leaching method, Microporous and Mesoporous Mater., 21 (4-6) (1998) 289-296.

DOI: 10.1016/s1387-1811(98)00015-8

Google Scholar

[6] B. Lee, Y. Kim, H. Lee, J. Yi, Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents, Microporous Mesoporous Mater., 50 (1) (2001) 77-90.

DOI: 10.1016/s1387-1811(01)00437-1

Google Scholar

[7] F. He, R. Zhuo, L. Liu, D. Jin, J. Feng, X.Wang, Immobilized lipase on porous silica beads: preparation and application for enzy matic ring-opening polymerization of cyclic phosphate, React. Funct. Polym., 47 (2) (2000) 153-158.

DOI: 10.1016/s1381-5148(01)00027-x

Google Scholar

[8] J. F. Chen, H. M. Ding, J. X. Wang, L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application, Biomaterials,25 (4) (2004) 723-727.

DOI: 10.1016/s0142-9612(03)00566-0

Google Scholar

[9] Z. Zhang, S. Dai, X. Fan, D. A. Blom, S. J. Pennycook, Y. J. Wei, Controlled synthesis of CdS nanoparticles inside ordered mesoporous sikica using ion-exchange reaction. The Journal of Physical Chemistry B, 105 (29) (2001) 6755-6758.

DOI: 10.1021/jp010541q

Google Scholar

[10] H.D. Jang, Experimental study of synthesis of silica nanoparticles by a bench-scale diffusion flame reactor, Powder Technol., 119 (2) (2001)102-108.

DOI: 10.1016/s0032-5910(00)00407-1

Google Scholar

[11] W. Stober, A. Fink, Controlled growth of monodisperse silica spheres in themicron size rang, J. Colloid Interface Sci., 26 (1) (1968) 62-69.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[12] W. Zhu, Y. Han and L. An, Synthesis of ordered mesostructured silica nanotubal arrays, Microporous and Mesoporous Mater., 84, (1-3) (2005) 69-74.

DOI: 10.1016/j.micromeso.2005.04.020

Google Scholar

[13] H. Fang, M. Zhang, Facile synthesis of ordered large- pore mesoporous silica thin film with symmetry using n-butanol as the cosurfactant, J. Non Cryst. Solids, 352 (21-22) (2006) 2279-2283.

DOI: 10.1016/j.jnoncrysol.2006.02.057

Google Scholar

[14] S. Shahidi, A. Jamali, S. D. Sharifi, H. Ghomi, In-situ synthesis of CuO nanoparticles on cotton fabrics using spark discharge method to fabricate antibacterial textile, Journal of Natural Fibers, 15 (6) (2017) 1-12.

DOI: 10.1080/15440478.2017.1376302

Google Scholar

[15] M. I. Khan, S. S. Alam, J. Fatema, and M. S. Islam, Waterproof and oil repellent treatments of cotton fabric, J. Text. Sci. Technol., 6 (202) 59-80.

Google Scholar

[16] Z. N. Jameel, A. J. Haider and S. Y. Taha, Synthesis of TiO2 Nan particles by using sol-gel method and its applications as antibacterial agents, Eng. Technol. J., 32 (3) (2014) 418-426.

Google Scholar

[17] J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Rati, E. S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chem., 19 (2016) 211-216.

DOI: 10.1016/j.proche.2016.03.095

Google Scholar

[18] H. Elbushra, M. Ahmed, H. Wardi, N. Eassa, Synthesis and characterization of TiO2 using sol-gel method at different annealing temperatures, Afr. Mater. Res. Soc., 3 (42-43)(2018)2527-2535.

DOI: 10.1557/adv.2018.230

Google Scholar

[19] R.Vacassy, R.J. Flatt, Synthesis of microporous silica spheres, J. Colloid Interface Sci., 227 (2) (2000) 302-315.

DOI: 10.1006/jcis.2000.6860

Google Scholar