Highly Active Fischer-Tropsch Synthesis Fe-BDC MOF-Derived Catalyst Prepared by Modified Solvothermal Method

Article Preview

Abstract:

Fe-MIL-88B was prepared by a method that utilizes ferric nitrate and terephthalic acid (TPA or H2BDC) as precursors. The catalyst was characterized by TEM, SEM, FTIR, XRD, BET, and TGA. The pyrolyzed MOF (Fe-MIL-88B/C) was then tested for FTS at 300 psi, 300/340°C and H2/CO=1 after reduction under flow of hydrogen at 400°C for 4 hours. GC product results show promising FTS performance and stability compared to previously reported Fe-MOF derived catalysts with CO conversion of 96.90% at 340°C for 40 hours and 97.45% at 300°C for 26 hours.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu G, Chen Q, Oyunkhand E, Ding S, Yamane N, Yang G, et al: Carbon. 2018; 130.30: 4–14.

Google Scholar

[2] Lu P, Sun J, Shen D, Yang R, Xing C, Lu C, et al: Appl. Energy. 2018; 209: 1–7.

Google Scholar

[3] An B, Cheng K, Wang C, Wang Y, and Lin W: ACS Catalysis. 2016; 6(6): 3610–8.

Google Scholar

[4] Shafer WD, Gnanamani MK, Graham UM, Yang J, Masuku CM, et al: Catalysts. 2019; 9(259).

Google Scholar

[5] Pengnarapat S, Ai P, Reubroycharoen P, Vitidsant T, Yoneyama Y, and Tsubaki N: J. Energy Chem. 2018; 27(2): 432–8.

Google Scholar

[6] Sun J, Yang G, Peng X, Kang J, Wu J, Liu G, et al: ChemCatChem. 2019;11(5):1412–24.

Google Scholar

[7] El-Moneim AA, Bhattarai J, Kato Z, Izumiya K, Kumagai N, Hashimoto K: ECS Trans. 2010; 25(40): 127–37.

DOI: 10.1149/1.3422589

Google Scholar

[8] Hashimoto K, El-Moneim AA, Kumagai N, Asami K: ECS Trans. 2005 ;1(4): 491–7.

Google Scholar

[9] El‐Khatib, K. M., Abou Helal, M. O., El‐Moneim, A. A., & Tawfik, H: Anti-Corros. Method. M. 2004; 51(2); 136-142.

DOI: 10.1108/00035590410523238

Google Scholar

[10] El-Moneim, A. A., Akiyama, E., Ismail, K. M., & Hashimoto, K: Corros. Sci. 2011; 53(9), 2988–93.

Google Scholar

[11] Gamil, M., Tabata, O., Nakamura, K., El-Bab, A. M. R. F., & El-Moneim, A. A: Key Eng. Mater. 2014; 605, 207–210.

DOI: 10.4028/www.scientific.net/kem.605.207

Google Scholar

[12] Wang Y, Gao W, Kazumi S, Fang Y, Shi L, Yoneyama Y, et al: Fuel. 2019; 253: 249–56.

Google Scholar

[13] Jiang N, Yang G, Zhang X, Wang L, Shi C, and Tsubaki N: Catal. Commun. 2011; 12(11): 951-4.

Google Scholar

[14] Nasser AH, El-Naggar H, El-Bery H, Basha I and Abdelmoneim A: RSC Adv. 2018; 8(74): 42415–23.

Google Scholar

[15] Nasser, A.-H., Guo, L., ELnaggar, H., Wang, Y., Guo, X., AbdelMoneim, A., & Tsubaki, N: RSC Adv. 2018; 8(27): 14854–63.

DOI: 10.1039/c8ra02193g

Google Scholar

[16] Howarth AJ, Peters AW, Vermeulen NA, Wang TC, Hupp JT, and Farha OK: Chem. Mater. 2017; 29(1): 26–39.

Google Scholar

[17] Oar-Arteta L, Valero-Romero MJ, Wezendonk T, Kapteijn F, and Gascon J: Catal. Sci. Technol. 2018; 8(1): 210–20.

DOI: 10.1039/c7cy01753g

Google Scholar

[18] Mehar U Nisa, Chen Y, Li X, and Li Z: J Taiwan Inst Chem Eng. 2020; 107: 44–53.

Google Scholar

[19] Santos VP, Wezendonk TA, Jaén JJD, Dugulan AI, et al: Nat. Commun. 2015; 6 (6451).

Google Scholar

[20] Wezendonk TA, Santos VP, Nasalevich MA, et al: ACS Catal. 2016; 6(5): 3236–47.

Google Scholar

[21] Wezendonk TA, Warringa QSE, Santos VP, et al: Faraday Discuss. 2017; 197: 225–42.

Google Scholar

[22] Isaeva VI, Eliseev OL, Kazantsev R v, et al: Polyhedron. 2019; 157: 389–95.

Google Scholar

[23] Isaeva VI, Eliseev OL, Kazantsev R v, et al: Dalton Trans. 2016; 45(30): 12006–14.

Google Scholar

[24] Qiu B, Yang C, Guo W, Xu Y, Liang Z, et al: J. Mater. Chem. A. 2017; 5(17): 8081–6.

Google Scholar

[25] Sun X, Suarez AIO, Meijerink M, van Deelen T, et al: Nat. Commun. 2017; 8(1680).

Google Scholar

[26] Horcajada P, Salles F, Wuttke S, Devic T, et al: J. Am. Chem. Soc. 2011; 133(44): 17839–47.

Google Scholar

[27] Sánchez-Sánchez M, Getachew N, Díaz K, Díaz-García M, Chebude Y, and Díaz I: Green Chem. 2015; 17(3): 1500–9.

DOI: 10.1039/c4gc01861c

Google Scholar

[28] Lu H, and Zhu S: Eur. J. Inorg. Chem. 2013; (8): 1294–300.

Google Scholar

[29] Huang L, Wang H, Chen J, Wang Z, et al: Microporous Mesoporous Mater. 2003; 58: 105–114.

Google Scholar

[30] Hou S, Wu YN, Feng L, Chen W, Wang Y, et al: Dalton Trans. 2018; 47(7): 2222–31.

Google Scholar

[31] Nguyen VH, Nguyen TD, Bach LG, Hoang T, Bui QTP, et al: Catalysts. 2018; 8(11): 1-20.

Google Scholar

[32] Ma M, Bétard A, Weber I, Al-Hokbany NS, Fischer RA, and Metzler-Nolte N: Cryst. Growth Des. 2013; 13(6): 2286–91.

Google Scholar

[33] Choi S, Cha W, Ji H, Kim D, Lee HJ, and Oh M: Nanoscale. 2016; 8(37): 16743–51.

Google Scholar

[34] Pu M, Guan Z, Ma Y, Wan J, Wang Y, et al: Appl. Catal. A: Gen. 2018; 549: 82–92.

Google Scholar

[35] Lou X, Hu H, Li C, Hu X, Li T, Shen M, et al: RSC Adv. 2016; 6(89): 86126–30.

Google Scholar

[36] Chirita M, Banica R, Ieta A, and Grozescu I: Part. Sci. Technol. 2012; 30(4): 354–63.

Google Scholar

[37] Li YS, Church JS, and Woodhead AL: J. Magn. Magn. Mater. 2012; 324(8):1543–50.

Google Scholar