Fe/S Co-Doped Titanium Dioxide Nanotubes: Optimization of the Photoelectrocatalytic Degradation Kinetics of Phenol Red

Article Preview

Abstract:

Photoelectrocatalysis has emerged as a promising technology to degrade recalcitrant pollutants such as textile dyes in wastewater completely. Titanium dioxide is typically used as a photocatalyst, but its wide bandgap constrains its use to the use of ultraviolet light. To extend its use to the visible-light region, we doped titanium dioxide nanotubes with iron and sulfur. We used them as a photoelectrode for the photoelectrocatalytic degradation of a model pollutant – phenol red. Response surface methodology using a Box-Behnken design of experiments was used to investigate the effects of initial dye concentration, applied potential, and dopant loading on phenol red degradation kinetics. Statistical analysis showed that our reduced cubic model adequately correlates these parameters. The fastest dye degradation rate was achieved at the optimized conditions: initial phenol red concentration = 5.0326 mg L-1, applied voltage = 29.9686 V, and dopant loading = 1.2244 wt.%. Complete degradation of phenol red may be achieved after 11.77 hours of treatment under the optimized conditions in a batch reactor. Our model's robustness enables it to be used for process modeling and a basis for designing scaled-up photoelectrocatalytic reactors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-55

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DA Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci. Technol. 16 (2019) 1193–1226.

DOI: 10.1007/s13762-018-2130-z

Google Scholar

[2] R. Javaid, U.Y. Qazi, Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview, Int. J. Environ. Res. Public Health. 16 (2019) (2066).

DOI: 10.3390/ijerph16112066

Google Scholar

[3] CR Holkar, AJ Jadhav, D. V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: Possible approaches, J. Environ. Manage. 182 (2016) 351–366.

DOI: 10.1016/j.jenvman.2016.07.090

Google Scholar

[4] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: Today and tomorrow. A review, Environ. Sci. Pollut. Res. 21 (2014) 8336–8367.

DOI: 10.1007/s11356-014-2783-1

Google Scholar

[5] C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review, Chem. Rev. 115 (2015) 13362–13407.

DOI: 10.1021/acs.chemrev.5b00361

Google Scholar

[6] F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B Environ. 202 (2017) 217–261.

DOI: 10.1016/j.apcatb.2016.08.037

Google Scholar

[7] S. Garcia-Segura, J.D. Ocon, M.N. Chong, Electrochemical oxidation remediation of real wastewater effluents — A review, Process Saf. Environ. Prot. 113 (2018) 48–67.

DOI: 10.1016/j.psep.2017.09.014

Google Scholar

[8] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1–35.

DOI: 10.1016/j.jphotochemrev.2017.01.005

Google Scholar

[9] E. Kusmierek, Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview, Catalysts. 10 (2020) 439.

DOI: 10.3390/catal10040439

Google Scholar

[10] M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, Y. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications, J. Mater. Chem. A. 4 (2016) 6772–6801.

DOI: 10.1039/c5ta09323f

Google Scholar

[11] F.X. Xiao, J. Miao, H.B. Tao, S.F. Hung, H.Y. Wang, H. Bin Yang, J. Chen, R. Chen, B. Liu, One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis, Small. 11 (2015) 2115–2131.

DOI: 10.1002/smll.201402420

Google Scholar

[12] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C Photochem. Rev. 15 (2013) 1–20.

Google Scholar

[13] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, DD. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331–349.

DOI: 10.1016/j.apcatb.2012.05.036

Google Scholar

[14] A. El Ruby Mohamed, S. Rohani, Modified TiO2 nanotube arrays (TNTAs): Progressive strategies towards visible light responsive photoanode, a review, Energy Environ. Sci. 4 (2011) 1065–1086.

DOI: 10.1039/c0ee00488j

Google Scholar

[15] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res. 52 (2013) 3581–3599.

DOI: 10.1021/ie303468t

Google Scholar

[16] M.G. Peleyeju, O.A. Arotiba, Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater, Environ. Sci. Water Res. Technol. 4 (2018) 1389–1411.

DOI: 10.1039/c8ew00276b

Google Scholar

[17] R. Shwetharani, M. Sakar, C.A.N. Fernando, V. Binas, R.G. Balakrishna, Recent advances and strategies to tailor the energy levels, active sites and electron mobility in titania and its doped/composite analogues for hydrogen evolution in sunlight, Catal. Sci. Technol. 9 (2019) 12–46.

DOI: 10.1039/c8cy01395k

Google Scholar

[18] YC Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: Synthesis and applications, ChemPhysChem. 11 (2010) 2698–2713.

DOI: 10.1002/cphc.201000276

Google Scholar

[19] E.C.R. Lopez, J.D. Ocon, J.V.D. Perez, Synthesis of Silver-Doped Titanium Dioxide Nanotubes by Single-Step Anodization for Enhanced Photodegradation of Acid Orange 52, Mater. Sci. Forum. 950 (2019) 149–153.

DOI: 10.4028/www.scientific.net/msf.950.149

Google Scholar

[20] E.C.R. Lopez, V.A.F. Cleofe, R.Y.A. Cañal, K.F.P. Boado, J.V.D. Perez, Photoelectrocatalytic Degradation of CI Basic Blue 9 under UV Light Using Silver-Doped Titanium Dioxide Nanotubes, Key Eng. Mater. 831 (2020) 132–141.

DOI: 10.4028/www.scientific.net/kem.831.132

Google Scholar

[21] E.C.R. Lopez, V.A.F. Cleofe, R.Y.A. Cañal, K.F.P. Boado, J.V.D. Perez, Highly-Organized One-Dimensional Copper-Doped Titanium Dioxide Nanotubes for Photoelectrocatalytic Degradation of Acid Orange 52, Key Eng. Mater. 801 (2019) 285–291.

DOI: 10.4028/www.scientific.net/kem.801.285

Google Scholar

[22] E.C.R. Lopez, N.E.B. Saputil, L.A. Loza, F.F.G. Camiguing, M.J.L. Mopon, J.V.D. Perez, Iron/Sulfur Co-Doped Titanium Dioxide Nanotubes: Optimization of the Photoelectrocatalytic Degradation of Phenol Red under Visible Light, Key Eng. Mater. 847 (2020) 95–101.

DOI: 10.4028/www.scientific.net/kem.847.95

Google Scholar

[23] K.M. Reza, A. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci. 7 (2017) 1569–1578.

DOI: 10.1007/s13201-015-0367-y

Google Scholar

[24] Y. Wang, R. Zhang, J. Li, L. Li, S. Lin, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett. 9 (2014) 46.

DOI: 10.1186/1556-276x-9-46

Google Scholar

[25] Q. Meng, T. Wang, E. Liu, X. Ma, Q. Ge, J. Gong, Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals, Phys. Chem. Chem. Phys. 15 (2013) 9549–9561.

DOI: 10.1039/c3cp51476e

Google Scholar

[26] X. Hou, X. Liu, J. Han, H. Liu, J. Yao, D. Li, L. Wang, B. Liao, J. Li, R. Zhang, Enhanced photoelectrocatalytic degradation of organic pollutants using TiO2 nanotubes implanted with nitrogen ions, J. Mater. Sci. 55 (2020) 5843–5860.

DOI: 10.1007/s10853-020-04461-5

Google Scholar

[27] G.G. Bessegato, L.C. De Almeida, S.L.C. Ferreira, M.V.B. Zanoni, Experimental design as a tool for parameter optimization of photoelectrocatalytic degradation of a textile dye, J. Environ. Chem. Eng. 7 (2019) 103264.

DOI: 10.1016/j.jece.2019.103264

Google Scholar

[28] G.G. Bessegato, J.C. Cardoso, M.V.B. Zanoni, Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes, Catal. Today. 240 (2015) 100–106.

DOI: 10.1016/j.cattod.2014.03.073

Google Scholar