[1]
A.K. Geim, K.S. Novoselov: The Rise of Graphene, Nature Materials, 2007, vol.6, pp.183-191.
Google Scholar
[2]
W.S. Hummers, R.E. Offeman: Preparation of Graphitic Oxide, Journal of the American Chemical Society, 1958, 80, p.1339.
DOI: 10.1021/ja01539a017
Google Scholar
[3]
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour: Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4, pp.4806-4814.
DOI: 10.1021/nn1006368
Google Scholar
[4]
M.P. Lavin-Lopez, M. Valverde Palomino, L. Sanchez-Silva, A. Romero Izquierdo: Recent Advances in Graphene Research. INTECH, 2016, pp.122-133.
Google Scholar
[5]
L. Sun, B. Fugetsu: Mass Production of Graphene Oxide from Expanded Graphite. Materials Letters, 2013¬, 109, pp.207-210.
DOI: 10.1016/j.matlet.2013.07.072
Google Scholar
[6]
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy: Layer-by-layer Assembly of Ultrathin Composite Films from Micron-sized Graphite Oxide Sheets and Polycations. Chemistry of Materials, 1999, 11, pp.771-778.
DOI: 10.1021/cm981085u
Google Scholar
[7]
X. Hu, Y. Yu; J. Zhou, L. Song: Effect of Graphite Precursor on Oxidation Degree, Hydrophilicity and Microstructure of Graphene Oxide. Nano, 2014, 9(3), 1450037, pp.1-8.
DOI: 10.1142/s1793292014500374
Google Scholar
[8]
A. Ambrosi, Ch.K. Chua, B. Khezri, Z. Sofer, R.D. Webster, M. Pumera: Chemically ReducedGgraphene Contains Inherent Metallic Impurities Present in Parent Natural and Synthetic Graphite, Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (32), pp.12899-12904.
DOI: 10.1073/pnas.1205388109
Google Scholar
[9]
H. Yang, H. Li, J. Zhai, L. Sun, H. Yu: Simple Synthesis of Graphene Oxide Using Ultrasonic Cleaner from Expanded Graphite. Industrial & Engineering Chemistry Research, 2014, 53(46), pp.17878-17883.
DOI: 10.1021/ie503586v
Google Scholar
[10]
A. Abbas, L.T. Mariana, A.N. Phan: Biomass-waste Derived Graphene Quantum Dots and their Applications, Carbon, 2018, 140, pp.77-99.
DOI: 10.1016/j.carbon.2018.08.016
Google Scholar
[11]
G. Supriyanto, N.K. Rukman, A.K. Nisa, M. Jannatin, B. Piere, A. Abdullah, M.Z Fahmi, H.S Kusuma: Graphene Oxide from Indonesian Biomass: Synthesis and Characterization, BioResources, 2018, 13 (3), 4832-4840.
DOI: 10.15376/biores.13.3.4832-4840
Google Scholar
[12]
N.G. Barbakadze, V.G. Tsitsishvili, T.V. Korkia, Z.G. Amiridze, N.V. Jalabadze, R.V. Chedia: Synthesis of Graphene Oxide and Reduced Graphene Oxide from Industrial Graphite Foil Wastes, European Chemical Bulletin, 2018, 7, pp.329-333.
DOI: 10.17628/ecb.2018.7.329-333
Google Scholar
[13]
Information on: www.mersen.com; http://www.toyotanso.com/index.html; http://www.geegraphite.com; /https://www.canadacarbon.com/; https://sealwiz.com/.
DOI: 10.1089/glre.2016.201011
Google Scholar
[14]
X. Chen, D. Meng, B. Wang, B.W. Li, C.W. Bielawski, R.S. Ruoff: Rapid Thermal Decomposition of Confined Graphene Oxide Films in Air. Carbon, 2016, 101, pp.71-76.
DOI: 10.1016/j.carbon.2016.01.075
Google Scholar
[15]
H.B. Zhang, J.W. Wang, Q. Yan, W.G. Zheng, C. Chen, Z.Z. Yu: Vacuum-assisted Synthesis of Graphene from Thermal Exfoliation and Reduction of Graphite Oxide, Journal of Materials Chemistry, 2011, 21(14), pp.5392-5397.
DOI: 10.1039/c1jm10099h
Google Scholar
[16]
W. Lu, D.M. Tang, Y.B. He, C.H. You, Z.Q. Shi, X.C. Chen: Low-temperature Exfoliated Graphenes: Vacuum-promoted Exfoliation and Electrochemical Energy Storage, ACS Nano, 2009, 3(11), pp.3730-3736.
DOI: 10.1021/nn900933u
Google Scholar
[17]
L.X. Jiat, H. Billie, Y. Zhang, L.K. Chiew, L.L Yee, S.G. Suyin, J. Thangalazhy-Gopakumar, S. Rigby: Review on Graphene and its Derivatives: Synthesis Methods and Potential Industrial Implementation. Journal of the Taiwan Institute of Chemical Engineers 2019, 98, pp.163-180.
DOI: 10.1016/j.jtice.2018.10.028
Google Scholar