Challenges and Opportunities for the Applications of Unconventional Superconductors

Article Preview

Abstract:

Since the discovery of superconductors, research has shifted from simple metals to alloys and further to complex compounds. As the record of critical temperature gradually increases, more opportunities and challenges have emerged. The Bardeen-Cooper-Schrieffer theory failed to explain certain observations of unconventional superconductors. However, breakthroughs have been made on the new understanding of unconventional superconductors. This article will introduce various challenges to and opportunities for the application of unconventional superconductors, including the high-temperature superconducting fault-current limiter and the superconducting energy-storage system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-98

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Onnes H. K. (1911). Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures., Proceedings of the Section of Sciences. 13: 1274–1276.

DOI: 10.1007/978-94-009-2079-8_15

Google Scholar

[2] Meissner W., Ochsenfeld R. (1933). Ein neuer Effekt bei Eintritt der Supraleitfähigkeit., Naturwissenschaften. 21 (44): 787-788.

DOI: 10.1007/bf01504252

Google Scholar

[3] Bardeen J., Cooper L., Schrieffer J. R. (December 1, 1957). Theory of Superconductivity. Physical Review. 108.

Google Scholar

[4] Daintith J. (2009). The Facts on File Dictionary of Physics (4th ed.).

Google Scholar

[5] Gallop J. C. (1990). SQUIDS, the Josephson Effects and Superconducting Electronics.

Google Scholar

[6] Durrant, A. (2000). Quantum Physics of Matter. CRC.

Google Scholar

[7] Tinkham, Michael (1996). Introduction to Superconductivity.

Google Scholar

[8] Bardeen J., Cooper L. N. and Schrieffer J. R. (1957). Theory of Superconductivity., Physical Review. 108 (5): 1175–1205.

Google Scholar

[9] Steglich, F., Aarts, J., Bredl, C. D., Lieke, W., Meschede, D., Franz, W., Schäfer, H. (1979). Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2., Physical Review Letters. 43 (25): 1892–1896.

DOI: 10.1007/978-94-011-1622-0_6

Google Scholar

[10] P. Dai, B. C. Chakoumakos, G. F. Sun, K. W. Wong, Y. Xin and D. F. Lu (1995). Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+δ by Tl substitution., Physica C. 243 (3–4): 201–206.

DOI: 10.1016/0921-4534(94)02461-8

Google Scholar

[11] Gao L., Xue Y. Y., Chen F., Xiong Q., Meng R. L., Ramirez D., Chu C. W., Eggert J. H., Mao H. K. (1994). Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures., Phys. Rev. B. 50 (6): 4260–4263.

DOI: 10.1016/0921-4534(94)91971-2

Google Scholar

[12] Jin J. X. Principle of High-Temperature Superconducting Technologies and Applications.

Google Scholar

[13] Ro Lee E., Lee S., Lee Ch., Jun Suh H. Test of DC reactor type fault-current limiter using magnet for optimal design.,.

DOI: 10.1109/tasc.2002.1018534

Google Scholar

[14] Firouzi M. a,⇑, Gharehpetian G. B.,b Mozafari B. (2014), Bridge-type superconducting fault current-limiter effect on distance relay characteristics,, Electrical Power and Energy Systems 68 (2015) 115–122.

DOI: 10.1016/j.ijepes.2014.12.061

Google Scholar