Thermal Camouflage Clothing in Diurnal and Nocturnal Environments

Article Preview

Abstract:

This paper shows the possibility to thermally camouflage a human body in a beach environment, during the day and at night, through the use of two knitted fabric clothing prototypes. The conceptual design process applied was initially developed based on the need to firstly understand the behaviour of an individual dressed under the focus of a thermal imaging camera in the light of the infrared spectrum. The thermal tests undertaken to observe the model's thermal camouflage in certain positions/perspectives in both environments, enable simultaneously running of different solutions while introducing changes to the clothing. Printing with copper pigments and the patchwork using stitched structures in polyester knitted fabric played a decisive role to capture the thermal colours of the thermal image intended for the camouflage effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-43

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Owens, Key elements of protection for military textiles, in: N. Pan, G. Sun (Eds.), Functional Textiles for Improved Performance, Protection and Health, Woodhead Publishing Limited, Cambridge, 2011, pp.249-268.

DOI: 10.1533/9780857092878.249

Google Scholar

[2] D.H., Vu, J. Krejčí, Evaluating of temperature difference between target and background using measurement and simulation, International Conference on Military Technologies. (2017) 16–21.

DOI: 10.1109/miltechs.2017.7988723

Google Scholar

[3] L. Fourt, N. Hollies, Factors involved in the study of clothing, in: Clothing: Comfort and Function, Marcel Dekker Inc., New York, 1970, pp.1-30.

Google Scholar

[4] G. Havenith, Clothing and thermoregulation, in: Textiles and the Skin, Karger, Switzerland, 2003, pp.35-49.

Google Scholar

[5] V. Rubežienė, I. Padleckienė, S. Varnaitė-Žuravliova, J. Baltušnikaitė, Reduction of thermal signature using fabrics with conductive additives, Materials Science (Medžiagotyra). 19 (2013) 409-414.

DOI: 10.5755/j01.ms.19.4.1730

Google Scholar

[6] R. Kumar, A. Agarwal, S. Ramakrishna, Development of a metamaterial structure for large-area surfaces with specified infrared emissivity, Optical Engineering. 57 (2018) 087109.

DOI: 10.1117/1.oe.57.8.087109

Google Scholar

[7] Y. Li, X. Bai, T. Yang, H. Luo, C.-W. Qiu, Structured thermal surface for radiative camouflage, Nature Communications. 9 (2018) 1–7.

DOI: 10.1038/s41467-017-02678-8

Google Scholar

[8] D. Nguyen, H. Xu, Y. Zhang, B. Zhang, Active thermal cloak, Applied Physics Letters, 107 (2015) 121901.

DOI: 10.1063/1.4930989

Google Scholar

[9] T. Han, X. Bai, J. Thong, B. Li, C.-W. Qiu, Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials, Advanced Materials. 26 (2014) 1731-1734.

DOI: 10.1002/adma.201304448

Google Scholar

[10] R. Hu, S. Zhou, Y. Li, D.-Y. Lei, X. Luo, C.-W. Qiu, Illusion thermotics, Advanced Materials. 30 (2018) 1707237.

DOI: 10.1002/adma.201707237

Google Scholar

[11] T. Z. Yang, Y. Su, W. Xu, X. D. Yang, Transient thermal camouflage and heat signature control, Applied Physics Letters. 109 (2016) 121905.

DOI: 10.1063/1.4963095

Google Scholar

[12] S. Zhou, R. Hu, X. Luo, Thermal illusion with twinborn-like heat signatures, International Journal of Heat and Mass Transfer. 127 (2018) 607-613.

DOI: 10.1016/j.ijheatmasstransfer.2018.07.034

Google Scholar

[13] J. Baumbach, Colour and camouflage: design issues in military clothing, in: E. Sparks (Ed.), Advances in Military Textiles and Personnel Equipment, Woodhead Publishing Limited, Cambridge, 2012, pp.79-102.

DOI: 10.1533/9780857095572.1.79

Google Scholar

[14] R. A. Scott, Textiles in defence, in: Handbook of Technical Textiles, Woodhead Publishing Limited, Cambridge, 2000, pp.425-460.

Google Scholar

[15] O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci, N. Kakenov, S. Balci, S. Olcum, S. Süzer, C. Kocabas, Graphene-based adaptive thermal camouflage, Nano Letters. 18 (2018) 4541-4548.

DOI: 10.1021/acs.nanolett.8b01746

Google Scholar

[16] M. J. Moghimi, G. Lin, H. Jiang, Highly absorptive nanophotonic structures on flexible substrates for infrared camouflage, International Conference on Nano/Micro Engineered and Molecular Systems. 5 (2017) 21-24.

DOI: 10.1109/nems.2017.8016965

Google Scholar

[17] C. Pimenta, C. Morais, R. Fangueiro, The thermal colour and the emissivity of printed pigments on knitted fabrics for application in diurnal thermal camouflage garment, Key Engineering Materials. 812 (2019) 127-133.

DOI: 10.4028/www.scientific.net/kem.812.127

Google Scholar

[18] C. Pimenta, C. Morais, R. Fangueiro, The behavior of textile materials in thermal camouflage, Textiles Identity and Innovation: in Touch. (2020) 281-287.

DOI: 10.1201/9780429286872-43

Google Scholar