Durable and Highly Dissipative Fibrous Composites for Strengthening Coastal Military Constructions

Article Preview

Abstract:

Reinforced concrete strategic structures for military purposes are often established in coastalor offshore areas, widely subjected to chemical attacks, mainly due to an aggressive saline and acidenvironments. Porosity of cementitious conglomerates favour penetration of chlorides, which tend tocorrode the internal metallic rebar. The reinforcement of structures with fibrous composite materialsis a viable solution to restore the initial requirements of the building, especially when it exerts defence purposes. Among synthetic fibres, polyphenylenebenzobisoxazole (PBO) is an organic fibre based on linked aromatic structures with high elastic modulus and tensile strength and highly dissipative attitudes. In this work, the assessment of durability of continuous fibrereinforced cementitious mortar (FRCM) composites is carried out comparing the mechanical performance of laminates subjected to uniaxial tensile tests. It is found that PBOFRCM presents high resistance against aggressive environments and specifically preserve its mechanical strength in the presence of saltwater, where other reinforcing materials undergo to a dramatic degradation process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-83

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Shekarchi, A. Rafiee, H. Layssi, Long-term chloride diffusion in silica fume concrete in harsh marine climates, Cement and Concrete Composites 31 (10) (2009) 769-775.

DOI: 10.1016/j.cemconcomp.2009.08.005

Google Scholar

[2] J. H. Gonzalez-Libreros, C. Sabau, L. H. Sneed, C. Pellegrino, G. Sas, State of research on shear strengthening of RC beams with FRCM composites, Construction and Building Materials 149 (2017) 444-458.

DOI: 10.1016/j.conbuildmat.2017.05.128

Google Scholar

[3] S. Mishra, H. K. Sharma, Impact Resistance and Mechanical Properties of UHPFRC, in: Iranian Journal of Science and Technology - Transactions of Civil Engineering, Vol. 43, Springer International Publishing, 2019, pp.371-380.

DOI: 10.1007/s40996-018-0196-y

Google Scholar

[4] J. J. Schuldies, R. Nageswaran, Ceramic matrix composites for ballistic protection of vehicles and personnel, in: Blast Protection of Civil Infrastructures and Vehicles Using Composites, Elsevier Ltd., 2010, pp.235-243.

DOI: 10.1533/9781845698034.2.235

Google Scholar

[5] D. J. Carr, Failure mechanisms of yarns subjected to ballistic impact, Journal of Materials Science Letters 7 (18) (1999) 585-588.

Google Scholar

[6] S. N. A. Safri, M. T. H. Sultan, M. Jawaid, K. Jayakrishna, Impact behaviour of hybrid composites for structural applications: A review, Composites Part B: Engineering 133 (2018) 112-121.

DOI: 10.1016/j.compositesb.2017.09.008

Google Scholar

[7] E. Wilusz, Military Textiles, Woodhead Publishing, Cambridge, (2008).

Google Scholar

[8] T. Uomoto, T. Nishimura, Deterioration of Aramid, Glass, and Carbon Fibers Due to Alkali, Acid, and Water in Different Temperatures, Special Publication 188 (1999) 515-522.

DOI: 10.14359/5650

Google Scholar

[9] P. Böer, L. Holliday, T. H. Kang, Independent environmental effects on durability of fiberreinforced polymer wraps in civil applications: A review (2013).

DOI: 10.1016/j.conbuildmat.2013.06.077

Google Scholar

[10] C. Signorini, A. Nobili, F. O. Falope, Mechanical performance and crack pattern analysis of aged Carbon Fabric Cementitious Matrix (CFRCM) composites, Composite Structures.

DOI: 10.1016/j.compstruct.2018.05.052

Google Scholar

[11] ACI 549.4R-13, Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures, American Concrete Institute, (2013).

DOI: 10.1016/j.prostr.2018.11.027

Google Scholar

[12] Ruredil Spa, Thermo-welded PBO-MESH 88 fabric, www.ruregold.com/it/download/pbomesh-88-scheda-tecnica/?wpdmdl=1315ind=1595193616008 (2020).

Google Scholar

[13] CNR TD200-R1, Guide for the design and construction of an externally bonded {FRP} system for strengthening existing structures, Tech. rep., Consiglio Nazionale delle Ricerche (2013).

DOI: 10.20333/25000136-2021-2-104

Google Scholar

[14] A. Nobili, F. O. Falope, Impregnated Carbon Fabric-Reinforced Cementitious Matrix Composite for Rehabilitation of the Finale Emilia Hospital Roofs: Case Study, Journal of Composites for Construction 21 (4) (2017) 05017001.

DOI: 10.1061/(asce)cc.1943-5614.0000780

Google Scholar

[15] A. Nobili, C. Signorini, On the effect of curing time and environmental exposure on impregnated Carbon Fabric Reinforced Cementitious Matrix (CFRCM) composite with design considerations, Composites Part B: Engineering 112 (2017) 300-313.

DOI: 10.1016/j.compositesb.2016.12.022

Google Scholar

[16] A. Nobili, Durability assessment of impregnated Glass Fabric Reinforced Cementitious Matrix (GFRCM) composites in the alkaline and saline environments, Construction and Building Materials 105 (2016) 465-471.[17] C. Signorini, A. Nobili, C. Siligardi, Sustainable mineral coating of alkali-resistant glass fibres in textile-reinforced mortar composites for structural purposes, Journal of Composite Materials 53 (28-30) (2019) 0021998319855765.

DOI: 10.1016/j.conbuildmat.2015.12.173

Google Scholar

[18] ICC AC434, Acceptance criteria for masonry and concrete strengthening using fiber-reinforced cementitious matrix (FRCM) composite systems, Tech. rep., International Code Council (2013).

DOI: 10.14359/51702356

Google Scholar

[19] RILEM 232-TDT, Test methods and design of textile reinforced concrete, Tech. Rep. 12, International Union of Laboratories and Experts in Construction Materials, Systems and Structures (2016).

DOI: 10.1617/s11527-016-0839-z

Google Scholar

[20] C. Signorini, A. Nobili, F. O. Falope, Mechanical performance and crack pattern analysis of aged Carbon Fabric Cementitious Matrix (CFRCM) composites, Composite Structures 202 (2018) 1114-1120.

DOI: 10.1016/j.compstruct.2018.05.052

Google Scholar

[21] CNR DT215, Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a Matrice Inorganica, Tech. rep., Consiglio Nazionale delle Ricerche (2018).

DOI: 10.1080/03749444.1987.10736715

Google Scholar

[22] D. Arboleda, F. G. Carozzi, A. Nanni, C. Poggi, Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites, Journal of Composites for Construction 20 (3) (2016) 04015063.

DOI: 10.1061/(asce)cc.1943-5614.0000626

Google Scholar

[23] D. Arboleda, S. Babaeidarabad, C. D. L. Hays, A. Nanni, Durability of Fabric Reinforced Cementitious Matrix (FRCM) Composites, in: Proceedings of the 7th International Conference on FRP Composites in Civil Engineering, International Institute for FRP in Construction (IIFC), (2014).

Google Scholar

[24] ASTM D 1141, Standard Practice for the Preparation of Substitute Ocean Water, Tech. rep., American Society for Testing and Materials International (2013).

Google Scholar

[25] S. Kajorncheappunngam, R. K. Gupta, H. V. GangaRao, Effect of aging environment on degradation of glass-reinforced epoxy, Journal of composites for construction 6 (1) (2002) 61-69.

DOI: 10.1061/(asce)1090-0268(2002)6:1(61)

Google Scholar

[26] J. Hartig, F. Jesse, K. Schicktanz, U. Häußler-Combe, Influence of experimental setups on the apparent uniaxial tensile load-bearing capacity of Textile Reinforced Concrete specimens, Materials and Structures/Materiaux et Constructions 45 (3) (2012) 433-446.

DOI: 10.1617/s11527-011-9775-0

Google Scholar

[27] G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P. B. Lourenço, D. V. Oliveira, F. Paolacci, C. G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Materials and Structures 47 (12) (2014) 2021-2037.

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[28] M. Messori, A. Nobili, C. Signorini, A. Sola, Mechanical performance of epoxy coated ARGlass fabric Textile Reinforced Mortar: Influence of coating thickness and formulation, Composites Part B: Engineering 149 (2018) 135-143.

DOI: 10.1016/j.compositesb.2018.05.023

Google Scholar

[29] Consiglio Superiore dei Lavori Pubblici, Italian Standard for the Qualification of FRCM composite systems for externally bonded reinforcement of existing structures, Tech. rep., Consiglio Superiore dei Lavori Pubblici (2019).

DOI: 10.30687/978-88-6969-515-5/010

Google Scholar

[30] C. Signorini, A. Sola, A. Nobili, C. Siligardi, Lime-cement textile reinforced mortar (TRM) with modified interphase, Journal of Applied Biomaterials and Functional Materials 17 (1) (2019) 228080001982782.[31] Toyobo Co., Ltd, Zylon (PBO fiber) Technical Information, www.toyobo-global.com/seihin/kc/pbo/zylon-p/bussei-p/technical.pdf (2005).

DOI: 10.1177/2280800019827823

Google Scholar

[32] J. Donnini, Durability of glass FRCM systems: Effects of different environments on mechanical properties, Composites Part B: Engineering (2019) 107047.

DOI: 10.1016/j.compositesb.2019.107047

Google Scholar