Improvement of Biocomposite Performance under Low-Velocity Impact Test - A Review

Article Preview

Abstract:

The study of the impact energy and the composite behaviour plays a vital role in the efficient design of composite structures. Among the various categories of impact tests, it is essential to study low-velocity impact tests as the damage generated due to these loads is often not visible to the naked eye. The internal damages can reduce the strength of the composites and hence the impact behaviour must be addressed specifically for improving their applications in the transport industry. The main aim of this paper is to provide a comprehensive review of the work focusing on the assessment of biocomposites performance under low impact velocity, the different deformations, and damage mechanisms, as well the methods to improve the impact resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-74

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Dani, K. Kanny, and P. K, A Review on Research and Development of Green Composites From Plant Protein-Based Polymers,, Polym. Compos., vol. 38, no. 8, p.1504–1518, (2017).

DOI: 10.1002/pc.23718

Google Scholar

[2] A.-M. Ahmad Y and S. Polat, Review of the Main Factors Controlling the Fracture Toughness and Impact Strength Properties of Natural Composites,, Mater. Res. Express, vol. 6, no. 2, (2018).

DOI: 10.1088/2053-1591/aaec28

Google Scholar

[3] L.S. Sutherland, A review of impact testing on marine composite materials: Part I - Marine impacts on marine composites,, Compos. Struct., vol. 188, no. November 2017, p.197–208, (2018).

DOI: 10.1016/j.compstruct.2017.12.073

Google Scholar

[4] J. Reiner, J. P. Torres, M. Veidt, and M. Heitzmann, Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates,, J. Compos. Mater., vol. 50, no. 26, p.3605–3617, (2016).

DOI: 10.1177/0021998315624002

Google Scholar

[5] A. Riccio et al., Impact behaviour of omega stiffened composite panels,, Prog. Aerosp. Sci., vol. 81, p.41–48, (2016).

Google Scholar

[6] S. Safri, M. Sultan, N. Yidris, and F. Mustapha, Low Velocity and High Velocity Impact Test on Composite Materials–A review,, Int. J. Eng. Sci, vol. 3, no. 9, p.50–60, (2014).

Google Scholar

[7] J. J. Andrew, S. M. Srinivasan, A. Arockiarajan, and H. N. Dhakal, Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review,, Compos. Struct., vol. 224, no. December 2018, (2019).

DOI: 10.1016/j.compstruct.2019.111007

Google Scholar

[8] R. Tiberkak, M. Bachene, S. Rechak, and B. Necib, Damage prediction in composite plates subjected to low velocity impact,, Compos. Struct., vol. 83, no. 1, p.73–82, (2008).

DOI: 10.1016/j.compstruct.2007.03.007

Google Scholar

[9] J. Modniks, E. Poriķe, J. Andersons, and R. Joffe, Evaluation of the apparent interfacial shear strength in short-flax-fiber/PP composites,, Mech. Compos. Mater., vol. 48, no. 5, p.571–578, (2012).

DOI: 10.1007/s11029-012-9301-7

Google Scholar

[10] M. I. M. Kandar and H. M. Akil, Application of Design of Experiment (DoE) for Parameters Optimization in Compression Moulding for Flax Reinforced Biocomposites,, Procedia Chem., vol. 19, p.433–440, (2016).

DOI: 10.1016/j.proche.2016.03.035

Google Scholar

[11] R. Muthuraj, M. Misra, F. Defersha, and A. K. Mohanty, Influence of processing parameters on the impact strength of biocomposites: A statistical approach,, Compos. Part A Appl. Sci. Manuf., vol. 83, p.120–129, (2016).

DOI: 10.1016/j.compositesa.2015.09.003

Google Scholar

[12] R. M. Johnson, N. Tucker, and S. Barnes, Impact performance of Miscanthus/Novamont Mater-Bi® biocomposites,, Polym. Test., vol. 22, no. 2, p.209–215, (2003).

DOI: 10.1016/s0142-9418(02)00084-3

Google Scholar

[13] M. Johnson, N. Tucker, S. Barnes, and K. Kirwan, Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres,, Ind. Crops Prod., vol. 22, no. 3, p.175–186, (2005).

DOI: 10.1016/j.indcrop.2004.08.004

Google Scholar

[14] M. Morreale, R. Scaffaro, A. Maio, and F. P. La Mantia, Mechanical behaviour of Mater-Bi®/wood flour composites: A statistical approach,, Compos. Part A Appl. Sci. Manuf., vol. 39, no. 9, p.1537–1546, (2008).

DOI: 10.1016/j.compositesa.2008.05.015

Google Scholar

[15] K. Kirwan, R. M. Johnson, D. K. Jacobs, G. F. Smith, L. Shepherd, and N. Tucker, Enhancing properties of dissolution compounded Miscanthus giganteus reinforced polymer composite systems. Part 1. Improving flexural rigidity,, Ind. Crops Prod., vol. 26, no. 1, p.14–27, (2007).

DOI: 10.1016/j.indcrop.2006.12.013

Google Scholar

[16] S. Z. H. Shah, S. Karuppanan, P. S. M. Megat-Yusoff, and Z. Sajid, Impact resistance and damage tolerance of fiber reinforced composites: A review,, Compos. Struct., vol. 217, no. November 2018, p.100–121, (2019).

DOI: 10.1016/j.compstruct.2019.03.021

Google Scholar

[17] S.N.A. Safri, M.T.H. Sultan, M. Jawaid, and K. Jayakrishna, Impact behaviour of hybrid composites for structural applications: A review,, Compos. Part B Eng., vol. 133, p.112–121, (2018).

DOI: 10.1016/j.compositesb.2017.09.008

Google Scholar

[18] S. D. Salman, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, Ballistic impact resistance of plain woven kenaf/aramid reinforced polyvinyl butyral laminated hybrid composite,, BioResources, vol. 11, no. 3, p.7282–7295, (2016).

DOI: 10.15376/biores.11.3.7282-7295

Google Scholar

[19] K. L. Pickering, M. G. A. Efendy, and T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance,, Compos. Part A Appl. Sci. Manuf., vol. 83, p.98–112, (2016).

DOI: 10.1016/j.compositesa.2015.08.038

Google Scholar

[20] A. P. Johari, S. Mohanty, S. K. Kurmvanshi, and S. K. Nayak, Influence of Different Treated Cellulose Fibers on the Mechanical and Thermal Properties of Poly(lactic acid),, ACS Sustain. Chem. Eng., vol. 4, no. 3, p.1619–1629, (2016).

DOI: 10.1021/acssuschemeng.5b01563

Google Scholar

[21] A. U. Birnin-yauri, N. A. Ibrahim, N. Zainuddin, K. Abdan, Y. Y. Then, and B. W. Chieng, Effect of maleic anhydride-modified poly(lactic acid) on the properties of its hybrid fiber biocomposites,, Polymers (Basel)., vol. 9, no. 5, p.1–16, (2017).

DOI: 10.3390/polym9050165

Google Scholar

[22] S. D. Salman, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, The effects of orientation on the mechanical and morphological properties of woven kenaf-reinforced poly vinyl butyral film,, BioResources, vol. 11, no. 1, p.1176–1188, (2016).

DOI: 10.15376/biores.11.1.1176-1188

Google Scholar

[23] U. Farooq and P. Myler, Finite element simulation of damage and failure predictions of relatively thick carbon fibre-reinforced laminated composite panels subjected to flat and round noses low velocity drop-weight impact,, Thin-Walled Struct., vol. 104, p.82–105, (2016).

DOI: 10.1016/j.tws.2016.03.011

Google Scholar