3D Simulation Modeling for the Electrical Conductivity of Carbon Nanotube Networks in Polymer Nanocomposites

Article Preview

Abstract:

In this paper, we developed a three-dimensional percolation model to investigate the effects of the concentration and morphology of CNTs (carbon nanotubes) on the electrical conductivity of the nanocomposites. In the model, we judged the connections between CNTs by range search algorithm based on KD-Tree structure. At the same time, DIJKSTRA-Melissa algorithm was applied to efficiently find all the conductive paths instead of finding conductive network in traditional methods. From the simulation results, CNTs with higher aspect ratio were easier to form the conductive network. In a certain range of CNT’s concentration, the relationship between the conductivity of the conductive network and the carbon nanotubes was basically consistent with the classical percolation theory. To verify our simulation model, the morphological, electrical properties of Carbon nanotubes (CNTs)/poly(dimethyl siloxane) (PDMS) nanocomposites with different aspect ratio (AR) of MWNTs were systematically studied. In conclusion, these unique advantageous properties could be exploited to suggest potential applications of artificial electronic skin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. C. Lee, G. Kwon, H. Kim, H. J. Lee, B. J. Sung, Applied Physics Express, 5, 396 (2012).

Google Scholar

[2] A. Celzard, E. Mcrae, C. Deleuze, M. Dufort, G. Furdin, J. F. Marêché, Physical Review B Condensed Matter, 53, 6209 (1996).

DOI: 10.1103/physrevb.53.6209

Google Scholar

[3] S. A. Carabineiro, M. F. Pereira, J. N. Pereira, C. Caparros, V. Sencadas, S. Lanceros-Mendez, Nanoscale Research Letters, 6, 1 (2011).

DOI: 10.1186/1556-276x-6-302

Google Scholar

[4] M.F.L. De Volder, S.H. Tawfick, R. H. Baughman, A. J. Hart, Science, 339, 535 (2013).

Google Scholar

[5] W. Bauhofer, J.Z. Kovacs, Composites Science & Technology, 69, 1486 (2009).

Google Scholar

[6] F. Du, J. E. Fischer, K.I. Winey, Physical Review B, 72, 121404 (2005).

Google Scholar

[7] M. Tabkhpaz, K. Parmar, A. M. Ali, S. Park, Journal of Thermoplastic Composite Materials (2014).

Google Scholar

[8] L. P. Simoneau, J. Villeneuve, A. Rochefort, Journal of Applied Physics, 118, 1 (2015).

Google Scholar

[9] F. Dalmas, R. Dendievel, L. Chazeau, J.Y. Cavaillé, C. Gauthier, Acta materialia, 54, 2923 (2006).

DOI: 10.1016/j.actamat.2006.02.028

Google Scholar

[10] Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, J. S. Harrison, Compos. Sci. Technol, 63, 1637 (2003).

Google Scholar

[11] R.C. Smith, J.D. Carey, R.J. Murphy, W.J. Blau, J. N. Coleman, S. R. P. Silva, Appl. Phys. Lett, 87, 263105 (2005).

Google Scholar

[12] C. Li, E.T. Thostenson, T.W. Chou, Appl. Phys. Lett. 91, 223114 (2007).

Google Scholar

[13] C. Li, E.T. Thostenson, T.W. Chou, Compos. Sci. Technol. 68, 1445 (2008).

Google Scholar

[14] B. Hu, N. Hu, Y. Li, Nanoscale Research Letters, 7, 1 (2012).

Google Scholar

[15] G. Shen, Z. H. Zhu, Polymer, 55, 4136 (2014).

Google Scholar

[16] C. Li, E. T. Thostenson, T. W. Chou, Compos. Sci.Technol. 68, 1227 (2008).

Google Scholar

[17] Y. Yu, G. Song, L. Sun, J. Appl. Phys. 108, 084319 (2010).

Google Scholar

[18] J.N. Coleman, S. Curran, A.B. Dalton, A. P. Davey, B. McCarthy, W. Blau, R. C. Barklie, Phys Rev B, 58, 7492e5 (1998).

Google Scholar

[19] W.S. Bao, S. A. Meguid, Z. H. Zhu, G. J. Weng, Journal of Applied Physics , 111, 093726 (2012).

Google Scholar

[20] N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Acta Materialia, 56, 2929 (2008).

Google Scholar