MoS2/Graphene Heterostructure Anode for Li-Ion Battery Application: A First-Principles Study

Article Preview

Abstract:

The development of next generation Li ion battery has attracted many attentions of researchers due to the rapidly increasing demands to portable energy storage devices. General Li metal/alloy anodes are confronted with challenges of dendritic crystal formation and slow charge/discharge rate. Recently, the prosperity of two-dimensional materials opens a new window for the design of battery anode. In the present study, MoS2/graphene heterostructure is investigate for the anode application of Li ion battery using first-principles calculations. The Li binding energy, open-circuit voltage, and electronic band structures are acquired for various Li concentrations. We found the open-circuit voltage decreases from ~2.28 to ~0.4 V for concentration from 0 to 1. Density of states show the electrical conductivity of the intercalated heterostructures can be significantly enhanced. The charge density differences are used to explain the variations of voltage and density of states. Last, ~0.43 eV diffusion energy barrier of Li implies the possible fast charge/discharge rate. Our study indicate MoS2/graphene heterostructure is promising material as Li ion battery anode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-59

Citation:

Online since:

August 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sevik, D. Çakır: Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/ Graphene Heterostructures by Functionalization of Graphene. Phys. Rev. Appl. 2019, 12, 014001.

DOI: 10.1103/physrevapplied.12.014001

Google Scholar

[2] I. Demiroglu, F.M. Peeters, O. Gülseren, D. Çakır, C. Sevik: Alkali Metal Intercalation in MXene/Graphene Heterostructures: A New Platform for Ion Battery Applications. J. Phys. Chem. Lett. 2019, 10, 727-734.

DOI: 10.1021/acs.jpclett.8b03056

Google Scholar

[3] Y. Aierken, C. Sevik, O. Gülseren, F.M. Peeters, D. Çakır: Mxenes/Graphene Heterostructures for Li Battery Applications: A First Principles Study. J. Mater. Chem. A 2018, 6, 2337-2345.

DOI: 10.1039/c7ta09001c

Google Scholar

[4] D. K. Bediako, M. Rezaee, H. Yoo, D. T. Larson, S.Y.F. Zhao, T. Taniguchi, K. Wantanabee, T. Brower-Thomas, E. Kaxiras, P. Kim: Heterointerface Effects in the Electrointercalation of Van Der Waals Heterostructures. Nature 2018, 558, 425-429.

DOI: 10.1038/s41586-018-0205-0

Google Scholar

[5] J. Zhang, A. Yang, X. Wu, J. van de Groep, P. Tang, S. Li, B. Liu, F. Shi, J. Wan, Q. Li, et al: Reversible And Selective Ion Intercalation Through The Top Surface Of Few-Layer MoS2. Nat. Commun. 2018, 9, 5289.

DOI: 10.1038/s41467-018-07710-z

Google Scholar

[6] J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen, W. Huang, N. Han, H. Ye, F. Zhao, Y. Li, et al: Hierarchical VS2 Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions. Adv. Mater. 2017, 29, 1702061.

DOI: 10.1002/adma.201702061

Google Scholar

[7] D. Wang, Y. Gao, Y. Liu, D. Jin, Y. Gogotsi, X. Meng, F. Du, G. Chen, Y. Wei: First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. J. Phys. Chem. C 2017, 121, 13025-13034.

DOI: 10.1021/acs.jpcc.7b03057

Google Scholar

[8] Q. Li, Z. Yao, J. Wu, S. Mitra, S. Hao, T.S. Sahu, Y. Li, C. Wolverton, V.P. Dravid: Intermediate Phases in Sodium Intercalation Into Mos2 Nanosheets and Their Implications for Sodium-Ion Batteries. Nano Energy 2017, 38, 342-349.

DOI: 10.1016/j.nanoen.2017.05.055

Google Scholar

[9] Y. Sun, D. Chen, Z. Liang: Liang, Z. Two-Dimensional Mxenes for Energy Storage and Conversion Applications. Mater. Today Energy 2017, 5, 22-36.

DOI: 10.1016/j.mtener.2017.04.008

Google Scholar

[10] B. Anasori, M.R. Lukatskays, Y. Gogotsi: 2D Metal Carbides and Nitrides (Mxenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098.

DOI: 10.1038/natrevmats.2016.98

Google Scholar

[11] P. Xiong, R. Ma, N. Sakai, L. Nurdiwijayanto, T. Sasaki: Unilamellar Metallic MoS2/Graphene Superlattice for Efficient Sodium Storage and Hydrogen Evolution. ACS Energy Lett. 2018, 3, 997-1005.

DOI: 10.1021/acsenergylett.8b00110

Google Scholar

[12] G. Yuan, T. Bo, X. Qi, P. Liu, Z. Huang, B. Wang: Monolayer Zr2B2: A Promising Two-Dimensional Anode Material for Li-Ion Batteries. Applied Surface Science, 480, 448-453. doi:https://doi.org/10.1016/j.apsusc.2019, 2, 222.

DOI: 10.1016/j.apsusc.2019.02.222

Google Scholar

[13] X. Ye, G. Zhu, J. Lin, C. Liu, X. Yan: Monolayer, Bilayer, and Heterostructure Arsenene as Potential Anode Materials for Magnesium-Ion Batteries: A First-Principles Study. J. Phys. Chem. C. 2019, 123, 15777-15786.

DOI: 10.1021/acs.jpcc.9b02399

Google Scholar

[14] First Principles Methods Using CASTEP. Zeitschrift fuer Kristallographie 220(5-6) pp.567-570 (2005).

Google Scholar

[15] J. P. Perdew, K. Burke, and M. Ernzerhof: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[16] G. Stefan, E. Stephan, and G. Lars: Effect of The Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456.

Google Scholar

[17] G. Wang, B. Xu, J. Shi, et al: New Insights Into Li Diffusion in Li–Si Alloys for Si Anode Materials: Role Of Si Microstructures[J]. Nanoscale, 2019, 11, 29.

DOI: 10.1039/c9nr03986d

Google Scholar