Synthesis and Characterization of Semiconductor Composites Gas Sensors Based on ZnO Doped TiO2 Thin Films by Laser-Induced Plasma

Article Preview

Abstract:

This work presents the development of n-type (TiO2) and p-type (ZnO) gas-sensitive materials from ZnO doped TiO2 thin films prepared by pulsed laser deposition technique (PLD) on a glass substrate as a gas sensor of CO2 gas. TiO2 gas-sensing layers have been deposited over a range of ZnO content (0, 20, and 40) wt %. The obtained thin films analysis by atomic force microscopy (AFM), and X-ray diffraction (XRD). Electrical characterization shows that TiO2:ZnO thin films were p-type conductivity and ZnO added was unable to change the composition to the n-type conductivity. There are notable gas-sensing response differences between n-type and p-type ZnO doped TiO2 thin film. The responses toward all tested oxidizing gases tend to increase with operating temperature for the n-type TiO2 films. Besides, the p-type ZnO doping results in a significant response improvement toward tested oxidizing gases such as CO2 gas at the low operating temperature of 60 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-120

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kołodziejczak, T. Jesionowski, Zinc Oxide-from Synthesis to Application: A Review. Mate., 7(2014) 2833-81.

Google Scholar

[2] B. Pirzada, N.A. Mir, N. Qutub, O. Mirage, S. Sabir, Synthesis, characterization, and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures, Mate. Scie. Engaging. B, 193(2015) 137–145.

DOI: 10.1016/j.mseb.2014.12.005

Google Scholar

[3] R. Kumar, G. Kumar, A. Umar A, Pulse laser deposition nanostructured ZnO thin films: A Review, Nanotechnology, 14 (2014) 1911-30.

DOI: 10.1166/jnn.2014.9120

Google Scholar

[4] H.R. Pouretedal, Visible photocatalytic activity of co-doped TiO2/Zr, N nanoparticles in wastewater treatment of nitrotoluene samples, J. Alloys comped., 735(2018) 2507–2511.

DOI: 10.1016/j.jallcom.2017.12.018

Google Scholar

[5] V. Thavasi, V. Renugopalakrishana, R. Jose, Controlled electron injection and transport at materials interfaces in dye-sensitized solar cells. Mate. Scie. and Engin. R, 63(2009)81-99.

DOI: 10.1016/j.mser.2008.09.001

Google Scholar

[6] C. Legrand, C. Malibert, S. Bach, Elaboration and characterization of thin films of TiO2 prepared by a sol-gel process, Thin solid films, 418(2002) 79-84.

DOI: 10.1016/s0040-6090(02)00714-9

Google Scholar

[7] K. Rakesh, B. Sonker, V. Gupta, M. Tomar M., Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases, J.of Hazardous Mater., 370(2019) 126-137.

DOI: 10.1016/j.jhazmat.2018.10.016

Google Scholar

[8] M. Cui, S. Pan, Z. Tang, X. Chen, X. Qiao, Q. Xu, Physiochemical properties of n-n heterostructured TiO2/Mo-TiO2 composites and their photocatalytic degradation of gaseous toluene, Chem. Special. Bioavailable, 29(2017) 60–69.

DOI: 10.1080/09542299.2017.1315617

Google Scholar

[9] N. Hellen, H. Park, K. Kim K., Characterization of ZnO/TiO2 Nanocomposites Prepared via the Sol-Gel Method. J. of the Kor. Cera. Soc., 55 (2018) 140-144.

DOI: 10.4191/kcers.2018.55.2.10

Google Scholar

[10] K. Amudha, P.S. Latha, K.R. Mohan, P.R. Umarani, Selective enhancement of second and third-order nonlinear optical properties of newly synthesized tris glycine epsomite single crystal, Mate. Letters, 223(2018) 33-36.

DOI: 10.1016/j.matlet.2018.03.165

Google Scholar

[11] R. Nankya, K.N. Kim, Sol-Gel Synthesis and Characterization of Cu-TiO2 Nanoparticles with Enhanced Optical and Photocatalytic Properties. J. Nanosci. Nanotechnol,  16 (2016) 11631-34.

DOI: 10.1166/jnn.2016.13564

Google Scholar

[12] N. Najafi, S. Mohammad, Resistivity Reduction of Nanostructured Undoped Zinc Oxide Thin Films for Ag/ZnO Bilayers Using APCVD and Sputtering Techniques, Mate. Res, 21 (2018) 1-10.

DOI: 10.1590/1980-5373-mr-2017-0933

Google Scholar

[13] N. Krstulovic, K. Salamo, O. Budimlija, J. Kovac, J. Dasovic, P. Umek P., Parameter optimization for the synthesis of Al-doped ZnO nanoparticles by laser ablation in the water, App. Sure. Sci., 440(2018) 916–925.

DOI: 10.1016/j.apsusc.2018.01.295

Google Scholar

[14] C. Cyril, R. Azariah, J. Swamina, Study of the Pulsed Laser Deposited ZnO Thin Films and its Electrical Performance as n-Channel in MOSFET, J. of Nano. and Optoe., 13(2018) 708-714.

DOI: 10.1166/jno.2018.2265

Google Scholar

[15] A.A. Salih, M.H. Makled, T.Y. Elrsasi, M.A. Hassoba, G.A. Al-Dahash, Comparison between the optical properties (s: f TiO2 and ZnO thin films deposited using Dc plasma sputtering and pulsed laser deposition, J. of Basic and Envi. Sci., 5(20018) 93-100.

Google Scholar

[16] C.P. Yang, S.P. Chang, S.J. Chang, S.X. Chen, M.H. Hsu, W.J. Tang, W.L. Huang, Bandgap Engineered Ultraviolet Photodetectors with Gallium-Zinc-Oxide via Co-Sputtering Method, ECS J. of Solid-State Scie. And Tech., 7 (2018) 3083-3088.

DOI: 10.1149/2.0151807jss

Google Scholar

[17] M. Hsu, H. Chang, S. P. Chang, W.T. Wu, J.Y. Li, Influence of oxygen on the performance of indium titanium zinc oxide UV sensors fabricated via RF sputtering, Mater. Sci. Semicond. Process. (2018) 74:297.

DOI: 10.1016/j.mssp.2017.10.031

Google Scholar

[18] A. Rahm, M. Lorenz, T. Nobis, G. Zimmermann, M. Grundman, B. Fuhrmann, Pulsed-laser deposition and characterization of ZnO nanowires with the regular lateral arrangement, Appl. Phys. An. 88(2007) 31–34.

DOI: 10.1007/s00339-007-3979-8

Google Scholar

[19] Y. Zeng, Y. Zhao, ZnO thin films prepared on titanium substrate by PLD technique at different substrate temperatures, Surf. And Inter. Anal., 46 (2014) 620.

DOI: 10.1002/sia.5559

Google Scholar

[20] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction (2001), 3rd ed., Prentice-Hall, Upper Saddle River, New Jersey.

Google Scholar

[21] B. Cullity, S. Stock, Elements of X-ray diffraction 3rd Ed, (2001), Prentice-Hall, New York.

Google Scholar

[22] H. Roni, Y. Hasrul, S. Nur, Deposition of TiO2/ZnO Thin Films using Spin-Coating Method, Int. J. Cur. Res. Eng. Sci. Tech. 1(2018) 226-232.

Google Scholar

[23] A. Wisitsoraat, A. Tuantranont, E. Comini, G. Sberveglieri, W. Wlodarski, Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films, Thin Solid Films 517 (2009) 2775–2780.

DOI: 10.1016/j.tsf.2008.10.090

Google Scholar

[24] K. Souad, M. M. Mutter, K. Zainab, S. Ghassan, Fabrication and Characterization of Gas Sensor from ZrO2: MgO Nanostructured Thin Films by R.F. Magnetron Sputtering Technique, Baghdad Scie. J., 16(2019, 199-208.

DOI: 10.21123/bsj.16.1.(suppl.).0199

Google Scholar

[25] A. Wisitsoraat, A. Tuantranont, Gas-Sensing Characterization of TiO2-ZnO Based Thin Film, IEEE SENSORS 2006, EXCO.

DOI: 10.1109/icsens.2007.355784

Google Scholar