Effect of ZrB2 Functionalized Nanoparticles Growth on Microstructural and Corrosion Resistance on Mild Steel through Electrodeposition Route

Article Preview

Abstract:

In other to have a better performance of Ni-P-Zn multifunctional applications, crystallite-like Ni-P-Zn-ZrB2 composite was actively fabricated by electrodeposition principle. The corrosion, structural evolution and surface active phenomena were investigated by various techniques. The influence of ZrB2 particulate on the morphology and corrosion properties was examined. The outcomes show an inclusive flower-like doped ZrB2 phase constituent and is uniformly distributed Ni-P-Zn-ZrB2 improved strengthening effect. The corrosion progression of the developed metal alloy was compared with other coating matrix from 10-25 minutes interval. The integration of ZrB2 on Ni-P-Zn phase especially for 25 min deposits significantly enhances corrosion resistance due to good grain refinement. Keywords: Ni-based composite, electrodeposition, time difference, coating, corrosion

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-81

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. O., Akinyemi, C. N., Nwaokocha, and A. O. Adesanya, Evaluation of corrosion cost of crude oil processing industry. Journal of Engineering Science and Technology, 7(4), (2012) 517–518.

Google Scholar

[2] I. G. Akande, O. O. Oluwole, and O. S. I. Fayomi, Optimizing the defensive characteristics of mild steel via the electrodeposition of Zn-Si3N4 reinforcing particles. Defence Technology, 14, (2018) 1–7.

DOI: 10.1016/j.dt.2018.11.001

Google Scholar

[3] G. H. Koch, M. P. Brongers, N. G., Thompson, Y. P. Virmani, and J. H. Payer, Corrosion cost and preventive strategies in the United States, 1, (2002) 156-164.

Google Scholar

[4] M. Jackson, D. Deocampo, F. Marra, and B. Scheetz, Mid-Pleistocene pozzolanic volcanic ash in ancient Roman concretes. Geoarchaeology, 25(1), (2010) 36–74.

DOI: 10.1002/gea.20295

Google Scholar

[5] P. A. L., Anawe, O. S. I.,Fayomi, and A. P. I.Popoola, Results in physics investigation of microstructural and physical characteristics of nano composite tin oxide-doped Al3+ in Zn2+ based composite coating by DAECD technique. Results in Physics, 7, (2017) 777–788.

DOI: 10.1016/j.rinp.2017.01.035

Google Scholar

[6] K. House, F. Sernetz, D. Dymock, J. R. Sandy, and A. J Ireland, Corrosion of orthodontic appliances—should we care?. Amer. j. of orthodontics and dentofacial orthopaedics, 133(4), (2008) 584–592.

DOI: 10.1016/j.ajodo.2007.03.021

Google Scholar

[7] R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, and K. Goto, Oxidation of ZrB2 and its composites: a review. Journal of Materials Science, 53(21), (2018) 14885-14906.

DOI: 10.1007/s10853-018-2601-0

Google Scholar

[8] G. H. Aydoğdu, and M. K. Aydinol, Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel. Corr Sci, 48(11), (2006). 3565–3583.

DOI: 10.1016/j.corsci.2006.01.003

Google Scholar

[9] M. M. Amin, L. K. Kee, and K. Yunus, The Process of electroplating in the presence of nickel salts. Ultra Science, 14(3), (2002) 309–318.

Google Scholar

[10] M. F.Ashby, Engineering Materials 1: An introduction to properties, applications and design. Materials Selection in Mechanical Design, 1, (2011). 1–464.

Google Scholar

[11] J. Dai, X. Liu, H., Zhai, Z. Liu, and J. Tian,. Preparation of Ni-coated Si3N4 powders via electroless plating method. Ceramics International, 35(8), (2009) 3407–3410.

DOI: 10.1016/j.ceramint.2009.06.007

Google Scholar

[12] K. H. Krishnan, S. John, K. N. Srinivasan, J. Praveen, M. Ganesan, and P. M. Kavimani, An overall aspect of electroless Ni-P depositions — A Review Article. Metallurgical and Mat. Transactions A, 37(6), (2006) 1917–(1926).

DOI: 10.1007/s11661-006-0134-7

Google Scholar

[13] A. Equbal, N. K. Dixit, and A. K. Sood, Electroless plating on plastic. International Journal of Scientific and Engineering Research, 8(4), (2013) 12-18.

Google Scholar

[14] W. Gao, D. Cao, Y. Jin, X. Zhou, G. Cheng, and Y. Wang, Microstructure and properties of Cu-Sn-Zn-TiO2 nano-composite coatings on mild steel. Surf and Coat Techno, 350, (2018) 801–806.

DOI: 10.1016/j.surfcoat.2018.04.046

Google Scholar

[15] A. A., Ayoola, O. S. I.,Fayomi, and S. O.Ogunkanmbi, Data in brief data on inhibitive performance of chloraphenicol drug on A315 mild steel in acidic medium. Data in Brief, 19, (2018) 804–809.

DOI: 10.1016/j.dib.2018.05.108

Google Scholar

[16] G. Laudisio, B. Seipel, A. Ruffini, and K. G. Nickel, Corrosion behavior of Si3N4–TiN composite in sulphuric acid. Corrosion Science, 47(7), (2005) 1666–1677.

DOI: 10.1016/j.corsci.2004.07.042

Google Scholar

[17] B. Li, D. Li, W. Xia, and W. Zhang, Synthesis and characterization of a novel Zn-Ni and Zn-Ni/Si3N4 composite coating by pulse electrodeposition. Appli Surf Sci, 458, (2018) 665–677.

DOI: 10.1016/j.apsusc.2018.07.146

Google Scholar

[18] I. Constantin, Microstructural characterization and corrosion behavior of electroless Ni-Zn-P Thin Films. J of Metall, 214, (2014) 1-6.

Google Scholar

[19] A. P. I. Popoola, and O. S. I. Fayomi, Effect of some process variables on zinc coated low carbon steel substrates. Scientific Research and Essays, 6(20), (2016). 4264–4272.

DOI: 10.5897/sre11.777

Google Scholar

[20] J. N. Balaraju, P. V. Radhakrishnan, A. Ezhilselvi, A. A. Kumar, Z. Chen, and K. P. Surendran, Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites. Surf and Coat Tech, 302, (2016) 389–397.

DOI: 10.1016/j.surfcoat.2016.06.040

Google Scholar