Theory of Charge Transfer Reaction Process at the Sensitizers Molecule Dye N3 Contact with MgO Semiconductor

Article Preview

Abstract:

A theoretical charge transport rate approach has taken to study the charge transfer properties in non-homogeneous N3-MgO systems. It develops at the fully quantum transition theory by means of transition energy, potential, driving energy and coupling constant. It is obtained that transition energy is determined by the donor acceptor scenario, dependent on the radii of N3 and MgO, dielectric constant and refractive index of solvents. The transition energy of charge carriers increased with increased dielectric constant and decreased refractive index of solvents. Transition energy of N3-MgO system reach to top with methanol (0.582 ev) and has minimum with Chlorobenzene (0.104eV). Dependences of the driving energy versus chemical potential of N3 dye and conduction band of semiconductor with potential barrier, the charge transfer rate are increased with decreased driving force of system. It is established that increased coupling constant factor reduces to increased charge transfer rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-102

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Formosinho, and M. eds.Barroso, Proton-coupled electron transfer: a Carrefour of chemical reactivity traditions. Royal Society of Chemistry. (2011).

DOI: 10.1039/9781849733168

Google Scholar

[2] H.M. Obeed, and H.J. Al-Agealy, Investigation and studied of charge transfer processes at HATNA and HATNA-Cl6 molecules contact with Cu metal. AIP Conference Proceedings 2292(1) (2020) 040010.

DOI: 10.1063/5.0030518

Google Scholar

[3] S.S. Al-Obaidi, H.J. Al-Agealy, and S.R. Abbas, Investigation And Study Of Electronic Transition Current For Au Metal Contact With Pentacene Molecule. Solid State Technology, 63(6) (2020) 8780-8789.

Google Scholar

[4] H.J. Al-Agealy, and M.Z. Fadhil, M.Z., Electron Transfer At Metal/Molecule Interface. Ibn AL-Haitham Journal For Pure and Applied Science, 26(3) (2017) 86-93.

Google Scholar

[5] H.J. Al-Agealy, and H.H.D.A. Janeri, Investigation the flow charge rate at InAs/D149 and ZnO/D149 system using theoretical quantum model. AIP Conference Proceedings 2123(1) (2019) 020055.

DOI: 10.1063/1.5116982

Google Scholar

[6] H.J.M. Al-agealy, and J.S.H. Al-Hakany, Theoretical Calculations of Rate Constant of Electron Transfer Across N3/TiO2 Sensitized Dye Interface Solar Cell. Ibn AL-Haitham Journal For Pure and Applied Science, 25(2) (2017). 160-169.

DOI: 10.30526/2017.ihsciconf.1766

Google Scholar

[7] M. Hollerer, D. Lüftner, P. Hurdax, T. Ules, S. Soubatch, F. S. Tautz, G. Koller, P. Puschnig, M. Sterrer, and M. G. Ramsey, Charge transfer and orbital level alignment at inorganic/organic interfaces: The role of dielectric interlayers. ACS nano, 11(6) (2017) 6252-6260.

DOI: 10.1021/acsnano.7b02449

Google Scholar

[8] Y.R. Shi, and Y.F. Liu, Theoretical study on the charge transport and metallic conducting properties in organic complexes. Physical Chemistry Chemical Physics, 21(24) (2019) 13304-13318.

DOI: 10.1039/c9cp02170a

Google Scholar

[9] R. Jitchati, Y. Thathong, and K. Wongkhan, Three synthetic routes to a commercial N3 dye. International Journal of Applied Physics and Mathematics, 2(2) (2012) 1076.

DOI: 10.7763/ijapm.2012.v2.64

Google Scholar

[10] N. Kouki, S. Trabelsi, M. Seydou, F. Maurel, and B. Tangour, Internal path investigation of the acting electrons during the photocatalysis of panchromatic ruthenium dyes in dye-sensitized solar cells. Comptes Rendus Chimie, 22(1) (2019) 34-45.

DOI: 10.1016/j.crci.2018.10.009

Google Scholar

[11] B. Nourozi, A. Aminian, N. Fili, Y. Zangeneh, A. Boochani, and P. Darabi, The electronic and optical properties of MgO mono-layer: Based on GGA-mBJ. Results in Physics, 12 (2019) 2038-2043.

DOI: 10.1016/j.rinp.2019.02.054

Google Scholar

[12] R. Q. Ghadhban, H. J. Al-Agealy, and M. A. Hassooni, Theoretical Analysis of the Electronic Current at Au/PTCDA Interface. NeuroQuantology, 18(9) (2020) 81.

DOI: 10.14704/nq.2020.18.9.nq20220

Google Scholar

[13] F. T. Vasko, and O. E. Raichev, Quantum Kinetic Theory and Applications: Electrons, Photons, Phonons. Springer Science and Business Media. (2006).

Google Scholar

[14] H. M. Obeed, and H. J. Al-Agealy, Investigation and studied of charge transfer processes at HATNA and HATNA-Cl6 molecules contact with Cu metal.  AIP Conference Proceedings, 2292(1) (2020) 040010.

DOI: 10.1063/5.0030518

Google Scholar

[15] W. J. Royea, A. M. Fajardo, and N. S. Lewis, Fermi golden rule approach to evaluating outer-sphere electron-transfer rate constants at semiconductor/liquid interfaces. The Journal of Physical Chemistry B, 101(51) (1997) 11152-11159.

DOI: 10.1021/jp972222y

Google Scholar

[16] H. J. AL-Agealy, T. S. AlMaadhede, M. A. Hassooni, A. K. Sadoon, A. M. Ashweik, H. A. Mahdi, and R. Q. Ghadhban, Theoretical study of electronic transfer current rate at dye-sensitized solar cells. AIP Conference Proceedings 1968(1) (2018) 030055.

DOI: 10.1063/1.5039242

Google Scholar

[17] H. J. Al-agealy, Theoretical Study of the Electronic Transition Rate Production in Alq3 molecule With Au Metal Interface. IOP Conference Series: Materials Science and Engineering 871(1) (2020) 012093.

DOI: 10.1088/1757-899x/871/1/012093

Google Scholar

[18] I. Smallwood, Handbook of organic solvent properties. Butterworth-Heinemann, (2012).

Google Scholar

[19] K. Hirota, N. Okabayashi, K. Toyoda, and O. Yamaguchi, Characterization and sintering of reactive MgO. Materials research bulletin, 27(3) (1992) 319-326.

DOI: 10.1016/0025-5408(92)90061-4

Google Scholar

[20] N. S. Lewis, Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces (1998).

Google Scholar

[21] B. Nourozi, A. Aminian, N. Fili, Y. Zangeneh, A. Boochani, and P. Darabi, The electronic and optical properties of MgO mono-layer: Based on GGA-mBJ. Results in Physics, 12 (2019) 2038-2043.

DOI: 10.1016/j.rinp.2019.02.054

Google Scholar

[22] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B, 110(28) (2006) 13872-13880.

DOI: 10.1021/jp061693u

Google Scholar

[23] P. Cendula, S. D. Tilley, S. Gimenez, J. Bisquert, M. Schmid, M. Grätzel, and J. O. Schumacher, Calculation of the energy band diagram of a photoelectrochemical water splitting cell. The Journal of Physical Chemistry C, 118(51) (2014) 29599-29607.

DOI: 10.1021/jp509719d

Google Scholar