Zinc Oxide Thin Film Morphology as Function of Substrate Position During Sputtering Process

Article Preview

Abstract:

Transparent conductive oxides are materials combining great transparency with high conductivity. In photovoltaic applications, they are developed under thin layer for the realization of upper electrodes of solar cells. Among transparent oxide materials, Zinc Oxide (ZnO) presents unique properties, starting with its first qualities to be abundant, low-cost and non-toxic oxide. Zinc Oxide thin film was deposited on rectangular glass substrate by magnetron sputtering. After an overview of the properties expected for good transparent conductive materials, the effect of distance from the center of the cell on the morphology of the film was investigated by Atomic Force Microscopy (AFM). The scanning was done on different area of the sample as function of the distance from the central position of the direct sputtering jet. As far as the distance increased, it has been noticed a quasi-linear increase in thickness of the ZnO deposited film and a change in the grain shape from spherical to pyramidal with an increase in the size of the particles. Controlling the sputtering distance allows the control of texture, thus of the Haze factor, the photo-generation of excitons, as well the optical transmission of the TCO layer and finally an improvement in the efficiency of the so-built photovoltaic cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-111

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Fortunato et al., ZnO:Ga Thin Films Produced by RF Sputtering at Room Temperature: Effect of the Power Density,, Materials Science Forum 455–456 (2004) 12–15.

DOI: 10.4028/www.scientific.net/msf.455-456.12

Google Scholar

[2] G. M. Wu, Y. Ding, D. W. Gao, G. J. Xing, Y. Zhou, and T. L. Yin, Electrochemical Deposition and Properties Research of ZnO Thin Films,, Advanced Materials Research 669 (2013) 72–78.

DOI: 10.4028/www.scientific.net/amr.669.72

Google Scholar

[3] C. H. Sui, B. Liu, T. N. Xu, B. Yan, and G. Y. Wei, Effect of the ZnO Buffer Layer Thickness on AZO Film Properties,, Advanced Materials Research 562–564 (2012) 81–84.

DOI: 10.4028/www.scientific.net/amr.562-564.81

Google Scholar

[4] High Performance ZnO-SnO2:F Nanocomposite Transparent Electrodes for Energy Applications | ACS Applied Materials & Interfaces., https://pubs.acs.org/doi/abs/10.1021/am5034473 (accessed Apr. 26, 2021).

Google Scholar

[5] D. S. Ginley and J. D. Perkins, Transparent Conductors,, in Handbook of Transparent Conductors, D. S. Ginley, Ed. Boston, MA: Springer US (2011) 1–25.

DOI: 10.1007/978-1-4419-1638-9_1

Google Scholar

[6] J. Garnier, Elaboration de couches minces d'oxydes transparents et conducteurs par spray cvd assiste par radiation infrarouge pour applications photovoltaÏques,, phdthesis, Arts et Métiers ParisTech, (2009).

Google Scholar

[7] F. Z. Bedia, A. Bedia, M. Aillerie, N. Maloufi, F. Genty, and B. Benyoucef, Influence of Al-doped ZnO Transparent Contacts Deposited by a Spray Pyrolysis Technique on Performance of HIT Solar Cells,, Energy Procedia 50 (2014) 853–861.

DOI: 10.1016/j.egypro.2014.06.104

Google Scholar

[8] F. Z. Bedia, A. Bedia, M. Aillerie, N. Maloufi, and B. Benyoucef, Structural, Optical and Electrical Properties of Sn-doped Zinc Oxide Transparent Films Interesting for Organic Solar Cells (OSCs),, Energy Procedia 74 (2015) 539–546.

DOI: 10.1016/j.egypro.2015.07.745

Google Scholar

[9] E. Fortunato, P. Barquinha, and R. Martins, Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,, Advanced Materials 24 (2012) 2945–2986. doi: https://doi.org/10.1002/adma.201103228.

DOI: 10.1002/adma.201103228

Google Scholar

[10] R. Gordon, Criteria for Choosing Transparent Conductors, (2000).

Google Scholar

[11] G. Haacke, New figure of merit for transparent conductors,, Journal of Applied Physics 47 (1976) 4086–4089.

DOI: 10.1063/1.323240

Google Scholar

[12] R. G. Gordon, Preparation and Properties of Transparent Conductors,, MRS Online Proceedings Library (OPL) 426 (1996).

Google Scholar

[13] R. Das, K. Adhikary, and S. Ray, The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive rf-magnetron sputtering,, Applied Surface Science 253 (2007) 6068–6073.

DOI: 10.1016/j.apsusc.2007.01.107

Google Scholar

[14] E. Medvedovski, N. A. Alvarez, C. J. Szepesi, O. Yankov, and P. Lippens, Advanced indium tin oxide ceramic sputtering targets (rotary and planar) for transparent conductive nanosized films,, Advances in Applied Ceramics 112 (2013) 243–256.

DOI: 10.1179/1743676112y.0000000066

Google Scholar

[15] M. Huang, Z. Hameiri, H. Gong, W.-C. Wong, A. G. Aberle, and T. Mueller, Novel Hybrid Electrode Using Transparent Conductive Oxide and Silver Nanoparticle Mesh for Silicon Solar Cell Applications,, Energy Procedia 55 (2014) 670–678.

DOI: 10.1016/j.egypro.2014.08.043

Google Scholar

[16] V. Srikant and D. R. Clarke, On the optical band gap of zinc oxide,, Journal of Applied Physics 83 (1998) 5447–5451.

DOI: 10.1063/1.367375

Google Scholar

[17] S. Roy and S. Basu, Improved zinc oxide film for gas sensor applications,, Bull Mater Sci 25 (2002) 513–515.

DOI: 10.1007/bf02710540

Google Scholar

[18] C. Battaglia et al., Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,, Nature Photonics 5 (2011).

DOI: 10.1038/nphoton.2011.198

Google Scholar

[19] O. Isabella, F. Moll, J. Krč, and M. Zeman, Modulated surface textures using zinc-oxide films for solar cells applications,, Physica Status Solidi (a) 207 (2010) 642–646. doi: https://doi.org/10.1002/pssa.200982828.

DOI: 10.1002/pssa.200982828

Google Scholar

[20] S. Kim, H. Moon, D. Gupta, S. Yoo, and Y. Choi, Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications,, IEEE Transactions on Electron Devices 56 (2009) 696–699.

DOI: 10.1109/ted.2009.2012522

Google Scholar

[21] P.-K. Shin, Y. Aya, T. Ikegami, and K. Ebihara, Application of pulsed laser deposited zinc oxide films to thin film transistor device,, Thin Solid Films 516 (2008) 3767–3771.

DOI: 10.1016/j.tsf.2007.06.068

Google Scholar

[22] S. Vyas, A Short Review on Properties and Applications of Zinc Oxide Based Thin Films and Devices : ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors,, Johnson Matthey Technology Review 64 (2020) 202–218.

DOI: 10.1595/205651320x15694993568524

Google Scholar

[23] K. Ellmer, Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties,, J. Phys. D: Appl. Phys. 33 (2000) R17.

DOI: 10.1088/0022-3727/33/4/201

Google Scholar

[24] K. Al Abdullah, S. Awad, J. Zaraket, and C. Salame, Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature,, Energy Procedia 119 (2017) 565–570.

DOI: 10.1016/j.egypro.2017.07.080

Google Scholar

[25] T. Tohsophon, J. Hüpkes, H. Siekmann, B. Rech, M. Schultheis, and N. Sirikulrat, High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells,, Thin Solid Films 516 (2008) 4628–4632.

DOI: 10.1016/j.tsf.2007.06.061

Google Scholar