Impact of Deep Ultraviolet-Ozone Photoactivation on Dielectric Properties of Amorphous SrTiO3 Thin Films

Article Preview

Abstract:

Strontium titanate SrTiO3 thin films have been fabricated by radio frequency magnetron sputtering on P-type Si at substrate temperature of 200°C. Two different postdeposition annealing methods were applied on the sputtered films. Specifically, conventional thermal annealing at 300°C for 60 min and photoactivation treatment under deep ultraviolet-ozone for 30 min. The dielectric properties of the SrTiO3 thin films were investigated by fabricating Au/STO/p-Si MOS capacitors. A dielectric constant (κ) with a value of 13 was obtained for as-deposited film, which has a thickness of 107 nm. While post-annealed samples showed elevated values of κ, precisely, 15.33 and 19.32 for films exposed to deep ultraviolet-ozone photoactivation and films annealed at 300°C, respectively. All devices showed a leakage current in the order of 10-8 A/cm2 at 1V. Based on XPS analysis, photo-activated films revealed the lowest percentage of oxygen vacancies, which designates the capability of this technique to enhancing films quality at a lower temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-23

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger : Thin Solid Films, vol. 661 (2018), p.23.

DOI: 10.1016/j.tsf.2018.05.054

Google Scholar

[2] J. Lin, J. Cheng, P. Li, W. Chen, and H. Huang: Superlattices Microstruc, vol. 130 (2019), p.168.

Google Scholar

[3] F. Pontes, E. Lee, E. Leite, E. Longo, and J. A. Varela: J. Mater. Sci, vol. 35 (2000), p.4783.

Google Scholar

[4] J. H. Ma, Z. M. Huang, X. J. Meng, S. J. Liu, X. D. Zhang, J. L. Sun, J. Q. Xue, J. H. Chu, and J. Li: Journal of Applied Physics, vol. 99 (2006), p.033515.

Google Scholar

[5] K. v. Benthem, C. Elsässer, and R. H. French: J. Appl. Phys. vol. 90 (2001), p.6156.

Google Scholar

[6] G. Panomsuwan, O. Takai , and N. Saito: Phys. Status Solidi A .vol 210, (2013), p.311.

Google Scholar

[7] D. Xu, Y. Yuan, H. Zhu, L. Cheng, C. Liu, J. Su, X. Zhang, H. Zhang, X. Zhang, and J. Li : Materials, vol. 12 (2019), p.138.

Google Scholar

[8] T. Bayrak, S. Kizir, E. Kahveci, N. Bıyıklı, and E. Goldenberg: J. Vac. Sci. Technol. A, vol. 35 (2017), p.021505.

DOI: 10.1116/1.4973970

Google Scholar

[9] E. Goldenberg, T. Bayrak, C. Ozgit-Akgun, A. Haider, S. A. Leghari, M. Kumar, and N. Biyikli: Thin Solid Films, vol. 590 (2015), p.193.

DOI: 10.1016/j.tsf.2015.07.060

Google Scholar

[10] B. Kınacı, N. Akın, İ. Kars Durukan, T. Memmedli, and S. Özçelik: Superlattices Microstruct, vol. 76 (2014), p.234.

DOI: 10.1016/j.spmi.2014.10.018

Google Scholar

[11] M.-C. Wang, F.-Y. Hsiao, and N.-C. Wu: J. Cryst. Growth, vol. 264, (2004), p.271.

Google Scholar

[12] K. Radhakrishnan, C. L. Tan, H. Q. Zheng, and G. I. Ng : J. Vac. Sci. Technol. A, vol. 18, (2000), p.1638.

Google Scholar

[13] X. Wang, U. Helmersson, L. D. Madsen, I. P. Ivanov, P. Münger, S. Rudner, B. Hjörvarsson, and J.-E. Sundgren: J. Vac. Sci. Technol. A, vol. 17, (1999) p.564.

Google Scholar

[14] V. Raghuwanshi, D. Bharti, A. K. Mahato, A. K. Shringi, I. Varun, and S. P. Tiwari: ACS Appl. Electron. Mater. Vol. 2 (2020), p.529.

DOI: 10.1021/acsaelm.9b00779

Google Scholar

[15] Z. Wang, V. Kugler, U. Helmersson, N. Konofaos, E. K. Evangelou, S. Nakao, and P. Jin: Appl. Phys. Lett., vol. 79 (2001), p.1513.

DOI: 10.1063/1.1398321

Google Scholar

[16] A. T. Oluwabi, D. Gaspar, A. Katerski, A. Mere, M. Krunks, L. Pereira, and I. Oja Acik: Materials, vol. 13 (2020), p.6.

DOI: 10.3390/ma13010006

Google Scholar

[17] S. Park, K.-H. Kim, J.-W. Jo, S. Sung, K.-T. Kim, W.-J. Lee, J. Kim, H. J. Kim, G.-R. Yi, Y.-H. Kim, M.-H. Yoon, and S. K. Park: Adv. Funct. Mater. vol. 25, (2015), p.2807.

DOI: 10.1002/adfm.201500545

Google Scholar

[18] K. Umeda, T. Miyasako, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, and T. Shimoda: J. Appl. Phys., vol. 113 (2013), p.184509.

Google Scholar

[19] Y. J. Tak, B. Du Ahn, S. P. Park, S. J. Kim, A. R. Song, K.-B. Chung, and H. J. Kim: Sci. Rep., vol. 6 (2016), p.21869.

Google Scholar

[20] Y. J. Tak, S. J. Kim, S. Kwon, H. jun Kim, K.-B. Chung, and H. J. Kim: J. Mater. Chem. C, vol. 6 (2018), p.249.

Google Scholar

[21] S. Ezhilvalavan, and T.-Y. Tseng: J. Appl. Phys., vol. 83, (1998), p.4797.

Google Scholar

[22] P. C. Joshi, and S. B. Krupanidhi: J. Appl. Phys., vol. 73, (1993), p.7627.

Google Scholar

[23] A. Frye, R. French, and D. Bonnell: Zeitschrift für Metallkunde, vol. 94, (2003), p.226.

Google Scholar

[24] S. Yadav, and S. Ghosh: ACS Appl. Mater. Interfaces, vol. 8, (2016), p.10436.

Google Scholar

[25] R. T. Haasch, E. Breckenfeld, and L. W. Martin: Surf. Sci. Spectra, vol. 21, (2014), p.87.

Google Scholar

[26] W. K. Min, S. P. Park, H. J. Kim, J. H. Lee, K. Park, D. Kim, K. W. Kim, and H. J. Kim: ACS Appl. Mater. Interfaces, vol. 12, (2020), p.24929.

DOI: 10.1021/acsami.0c01530

Google Scholar

[27] T. Bayrak, and E. Goldenberg: Materials Research Express, vol. 4, (2017), p.055016.

Google Scholar

[28] M. Dawber, K. Rabe, and J. Scott: Rev. Mod. Phys., vol. 77, (2005), p.1083.

Google Scholar