Enhanced Performance of the Non-Polar Ultraviolet Light-Emitting Diodes with Lattice-Matched Quaternary Quantum Barriers

Article Preview

Abstract:

The performance of non-polar AlGaN-based ultraviolet light-emitting diode (LED) with completely lattice-matched AlInGaN quantum barriers along the [1-100] m-direction were firstly proposed and intensively studied. The simulation results indicated that the internal quantum efficiency (IQE) of the non-polar AlGaN-based LED could be enhanced by 9.7% at an injection current of 350 mA with the introduction of AlInGaN barriers. Compared with the nonpolar AlGaN-based LED with conventional AlGaN quantum barriers, not only the Shockley–Read–Hall recombination rate for the nonpolar AlGaN-based LED with quaternary barriers was remarkably reduced, but also the radiative recombination rate was significantly improved. The enhanced performance for the nonpolar AlGaN-based LED with AlInGaN barriers could be interpreted as the result that the density of dislocations in active region was decreased due to the reduced in-plane strain in the AlGaN/AlInGaN MQWs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Pandey, et al.: Photonics Res. Forum Vol. 8(3) (2020), pp.113-119.

Google Scholar

[2] Y. Peng, R, et al.: ASME J. Electron. Packag. Forum Vol. 141, (2019) p.40804.

Google Scholar

[3] W. Shin, et al.: Opt. Express. Forum Vol. 27(26) (2019) pp.38413-38420.

Google Scholar

[4] P. Waltereit, et al.: Nature. Forum Vol. 406(6798) (2000) p.865.

Google Scholar

[5] M. Funato and Y. Kawakami:. Proc. SPIE. Forum Vol. 9363 (2015) p. 93631T.

Google Scholar

[6] A. Nasir, et al.: Optik. Forum Vol. 192 (2019) p.162978.

Google Scholar

[7] A. Fan, et al.: Superlattices Microstruct. Forum Vol. 145 (2020) p.106632.

Google Scholar

[8] J. Song, et al.: ACS Appl. Mater. Interfaces. Forum Vol.11 (2019) pp.33140-33146).

Google Scholar

[9] Y. S. Cho, et al.: Appl. Phys. Lett. Forum Vol. 93 (2008) p.111904.

Google Scholar

[10] J. Zhao, et al.: Jpn. J. Appl. Phys. Forum Vol. 59 (2020) p.010909.

Google Scholar

[11] J. Die, et al.: Appl. Phys. Express. Forum Vol.12 (2019) p.015503.

Google Scholar

[12] K. C. Kim, et al.: Appl. Phys. Lett. Forum Vol. 93 (2008) p.142108.

Google Scholar

[13] S. Wang, , et al.: J. Mod. Opt. Forum Vol. 60 (2013) p.2012–(2017).

Google Scholar

[14] M. A. Laurent, S. Keller, U. K. Mishra: Phys. status solidi A. Forum Vol. 216 (2019) p.1800523.

Google Scholar

[15] X. Chen, et al.: Journal of Electro. Mater. Forum Vol. 48(4) (2019) pp.2572-2576.

Google Scholar

[16] H. Saidi, S. Ridene: Superlattices Microstruct. Forum Vol. 98 (2016) pp.504-514.

Google Scholar

[17] F. Bernardini, V. Fiorentini: Phys. Rev. B Forum Vol. 64 (2001) p.085207.

Google Scholar

[18] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan: J. Appl. Phys. Forum Vol. 89(11) (2001) pp.5815-5875.

Google Scholar

[19] F. G. McIntosh, et al: Appl. Phys. Lett. Forum Vol. 68 (1996) p.40.

Google Scholar

[20] Y. K Kuo, et al: IEEE J. Quantum Electron. Forum Vol. 46(8) (2010) pp.1214-1220.

Google Scholar

[21] R. Ni, et al: IEEE Photonics Tech. Lett. Forum Vol. 32(16), (2020) pp.971-974.

Google Scholar

[22] I. Vurgaftman, J. R. Meyer: J. Appl. Phys. Forum Vol. 94 (2003) pp.3675-3696.

Google Scholar

[23] H. Hu, et al: Sci. Rep. Forum Vol. 9 (2019) p.3447.

Google Scholar

[24] H. Huang, et al.: J. Electrochem. Soc. Forum Vol. 158 (2011) p. H915.

Google Scholar

[25] T. Nakano, et al.: Appl. Phys. Lett. Forum Vol. 117 (2020) p.012105.

Google Scholar