[1]
S. Ezeddini, M. Boujelbene, E. Bayraktar, S.B. Salem, Optimization of the surface roughness parameters of Ti-Al intermetallic based composite machined by wire electrical discharge machining, Coatings 10 (2020) 900.
DOI: 10.3390/coatings10090900
Google Scholar
[2]
J.C. Williams, R.R. Boyer, Opportunities and issues in the application of titanium alloys for aerospace components, Metals 10 (2020) 705.
DOI: 10.3390/met10060705
Google Scholar
[3]
M. Schwartz, Encyсlopedia of smart materials, New York: John Wiley and Sons, (2002).
Google Scholar
[4]
A. Weirich, B. Kuhlenkötter, Applicability of shape memory alloys in aircraft interiors, Actuators 8 (2019) 61.
DOI: 10.3390/act8030061
Google Scholar
[5]
D.J. Hartl, D.C. Lagoudas, Aerospace applications of shape memory alloys, Proc. IMechE, Part G: J. Aerospace Eng. 221 (2007).
Google Scholar
[6]
G. Jodin, Y. Bmegaptche Tekap, J.M. Saucray, J.F. Rouchon, M. Triantafyllou, M. Braza, Optimized design of real-scale A320 morphing high-lift flap with shape memory alloys and innovative skin, Smart Mater. Struct. 27 (2018) 115005.
DOI: 10.1088/1361-665x/aae2ef
Google Scholar
[7]
J. Sun, Q. Guan, Y. Liu, J. Leng, Morphing aircraft based on smart materials and structures: a state-of-theart review, J. of Intelligent Material Systems and Structures 27 (2016) 17.
DOI: 10.1177/1045389x16629569
Google Scholar
[8]
B. Zhou, Z. Kang, Z. Wang, S. Xue, Finite element method on shape memory alloy structure and Its applications, Chin. J. Mech. Eng. 32:84 (2019).
DOI: 10.1186/s10033-019-0401-3
Google Scholar
[9]
Zh.M. Blednova, D.G. Budrevich, N.A. Makhutov, M.I. Chaevskij, Surface modification with shape memory materials for detachable joints obtaining, J. of Machinery Manufacture and Reliability 31 (2002) 5.
Google Scholar
[10]
R. Hood, D.K. Aspinwall, W. Voice, Creep feed grinding of a gamma titanium aluminide intermetallic alloy using SiC abrasives, J. of Materials Processing Technology 191 (2007) 1-3.
DOI: 10.1016/j.jmatprotec.2007.03.081
Google Scholar
[11]
R. Hood, D.K. Aspinwall, W. Voice, Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive, Int. J. of Machine Tools and Manuf. 47 (2007) 9.
DOI: 10.1016/j.ijmachtools.2006.10.008
Google Scholar
[12]
Y.I. Soler, D.Yu. Kazimirov, Influence of abrasive wheels characteristics on phases change of nitinol in different structural conditions, ARPN J. of Eng. and Applied Sci. 15 (2020) 11.
Google Scholar
[13]
A.P. Markopoulos, I.S. Pressas, D.E. Manolakos, A review on the machining of nickel-titanium shape memory alloys, Rev. Adv. Mater. Sci. 42 (2015) 28-35.
Google Scholar
[14]
E. Kaya, I. Kaya, A review on machining of NiTi shape memory alloys: the process and post process perspective, Int. J. Adv. Manuf. Technol. 100 (2019) 2045-2087.
DOI: 10.1007/s00170-018-2818-8
Google Scholar
[15]
M. Losertová, M. Štencek, D. Matýsek, O .Štefek, J. Drápala, Microstructure evolution of heat treated NiTi alloys, IOP Conf. Series: Mater. Sci. and Eng. 266 (2017) 012008.
DOI: 10.1088/1757-899x/266/1/012008
Google Scholar
[16]
T.S. Oliveira, L..S Procópio, P.H..A Martins, U.D. de Castro, M.A. Martins, C.B.S. Vimieiro, Characterization of mechanical properties of an alloy with shape memory – nitinol, COBEM 2015 23rd ABCM Int. Congr. of Mechanical Eng. (2015).
DOI: 10.20906/cps/cob-2015-0152
Google Scholar
[17]
L. Gua, G. Hea, W. Zhaoa, G. Lahoti, High performance hybrid machining of gamma-TiAl with blasting erosion arc machining and grinding, CIRP Annals – Manuf. Technology 69 (2020) 161-164.
DOI: 10.1016/j.cirp.2020.04.058
Google Scholar
[18]
X. Xia, T. Yub, W. Dinga, J. Xu, Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels, Precision Eng. 53 (2018)134-145.
DOI: 10.1016/j.precisioneng.2018.03.007
Google Scholar
[19]
Z.I. Kremen', Yu.M. Zubarev, A.I. Lebedev, High-porous CBN vitrified wheels and their application in grinding high-ductile alloys, Metalloobrabotka 3 51 (2009) 2-4.
Google Scholar