Effect of ZnO, SiO2 and Al2O3 Doped on Morphological, Optical, Structural and Mechanical Properties of Polylactic Acid

Article Preview

Abstract:

In this study, an experimental investigation of the effect of addition of Alumina (Al2O3), Zinc Oxide (ZnO), and Silicon Oxide (SiO2) particles powders on the mechanical behavior and crystallinity of the PLA films was carried. Granulated of Polylactic acid (PLA) and ceramic powders with different concentrations were prepared to form PLA/ZnO and PLA/ZnO-SiO2-Al2O3 composites films using a solvent casting process. Morphology of PLA and composite films were examined by optical microscopy, chemical and crystal structures of composites are analyzed by (ATR-FTIR) spectroscopy and XRD techniques. Tensile strength and young modulus are determined by traction test. The obtained result by optical microscopy shows the micrograph of PLA samples with different composition are evenly distributed on the film surface. The intensity of the absorption band located at 754 cm-1 which correspond to the crystalline phase of PLA is verified by the ATR-FTIR characterization. The XRD diffraction shows that the ceramic particles influence on the peaks intensity of PLA films localized at 19.5 ° C and 22.5 ° C, which indicate an augmentation in the crystallinity of the composite films. Mechanical tests show Tensile strength and Elasticity modulus are improved after the addition of Oxide Particles to Polylactic acid films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-113

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ding, L. Bo, J. Rui, and J. T. Li, Preparation and Properties of PLA/Nano-ZnO Composite, Applied Mechanics and Materials 392 (2013) 41-45.

DOI: 10.4028/www.scientific.net/amm.392.41

Google Scholar

[2] R.G. Sinclair, The Case for Polylactic Acid as a Commodity Packaging Plastic, Journal of Macromolecular Science, Part A, 33 (2006) 585-597.

DOI: 10.1080/10601329608010880

Google Scholar

[3] R. Auras, B. Harte, S. Selke, An Overview of Polylactides as Packaging Materials, Macromolecular Bioscience 4 (2004) 835-864.

DOI: 10.1002/mabi.200400043

Google Scholar

[4] Zheng, H. Juan, Z. W. Zhao, Y. L. Liu, X. F. Zhao, and K. H. Xi., Preparation of PLA/Nano-ZnO Composites, Advanced Materials Research, 476–478 (2012)1901- (1904).

DOI: 10.4028/www.scientific.net/amr.476-478.1901

Google Scholar

[5] C. Mana, C. Zhang, Y. Liu, W. Wang, W. Ren, L. Jiang, F. Reisdorffer, T. Phap Nguyen, Y. Dana, Poly (lactic acid)/titanium dioxide composites: Preparation and performance under ultraviolet irradiation", Polymer Degradation and Stability, 97 (2012) 856-862.

DOI: 10.1016/j.polymdegradstab.2012.03.039

Google Scholar

[6] M. S. Nasab; M. Tabari; M. H. Azizi. Morphological and mechanical properties of Poly (lactic Acid) /zinc oxide nanocomposite films, Nanomedicine Research Journal, 3 (2018) 96-101.

Google Scholar

[7] M. Ranjbar, G. D. Noudeh, M. A. Hashemipour, I. Mohamadzadeh, A systematic study and effect of PLA/Al2O3 nanoscaffolds as dental resins: mechanochemical properties, Artificial Cells, Nanomedicine, and Biotechnology, 47 (2019) 201-209.

DOI: 10.1080/21691401.2018.1548472

Google Scholar

[8] X. Wen, K. Zhang, Y. Wang, L. Han, C. Han, H. Zhang, S. Chen, L. Dong, Study of the thermal stabilization mechanism of biodegradable poly(L-lactide)/silica nanocomposites, Polymer International 60 (2011) 202-210.

DOI: 10.1002/pi.2927

Google Scholar

[9] J.W. Huang, Y.C. Hung, Y.L. Wen, C.C. Kang, M.Y. Yeh, Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization, Journal of Applied Polymer Science 112 (2009) 3149-3156.

DOI: 10.1002/app.29699

Google Scholar

[10] P.A. Tsai, W.M. Chiu, C.E. Lin &J.H. Wu, Fabrication and Characterization of PLA/SiO2/Al2O3 Composites Prepared by Sol-Gel Process 52 (2013)1488-1495.

DOI: 10.1080/03602559.2013.820751

Google Scholar

[11] Li, X. Dong, J. M. Tian, C. Wang, and L. M. Dong., Surface Crystallization of ZnO-Al2O3-SiO2 Glass. Key Engineering Materials 280-283 (2007)1655-1658.

DOI: 10.4028/www.scientific.net/kem.280-283.1655

Google Scholar

[12] Ehrt, Doris, H.T. Vu, A. Herrmann, and Günter Völksch. Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics., Advanced Materials Research 39-40 (2008) 231-236.

DOI: 10.4028/www.scientific.net/amr.39-40.231

Google Scholar

[13] B. Mailhot, A. Rivaton, J.L. Gardette, A. Moustaghfir, E. Tomasella, M. Jacquet, X.G. Ma, K. Komvopoulos, Enhancement of the photoprotection and nanomechanical properties of polycarbonate by deposition of thin ceramic coatings, Journal of Applied Physics 99 (104310) (2006)1- 7.

DOI: 10.1063/1.2197030

Google Scholar

[14] R. Yang, Y. Li, J. Yu, Photo-stabilization of linear low density polyethylene by inorganic nano-particles, Polymer Degradation and Stability 88 (2005)168-174.

DOI: 10.1016/j.polymdegradstab.2003.12.005

Google Scholar

[15] M. Murariu, A. Doumbia, L. Bonnaud, A. L. Dechief, Y. Paint, M. Ferreira, C. Campagne, E. Devaux, and P. Dubois, High-Performance Polylactide/ZnO Nanocomposites Designed for Films and Fibers with Special End-Use Properties, Biomacromolecules 12 (2011) 1762-1771.

DOI: 10.1021/bm2001445

Google Scholar

[16] J. Shojaeiarani, D. Bajwa, L. Jiang, J. Liaw, K. Hartman, Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly (lactic acid)– zinc oxide composites, Polymer Engineering and Science 59 (2019) 1242-1249.

DOI: 10.1002/pen.25107

Google Scholar

[17] J.T. Yeh, W.L. Chai, C.S. Wu, Study on the Preparation and Characterization of Biodegradable Polylactide/SiO2–TiO2 Hybrids, Polymer-Plastics Technology and Engineering 47(2008) 887-894.

DOI: 10.1080/03602550802189076

Google Scholar

[18] J.W. Huang, Y. C. Hung, Y.L. Wen, C.C. Kang, M.Y. Yeh, Polylactide/nano and microscale silica composite films. I. Preparation and characterization, Journal of Applied Polymer Science 112 (2009) 1688-1694.

DOI: 10.1002/app.29616

Google Scholar

[19] S. Shankar, L.F. Wang, J.W. Rhim, Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films, Materials Science and Engineering: C 93 (2018) 289-298.

DOI: 10.1016/j.msec.2018.08.002

Google Scholar

[20] P. Qu, Y. Goa, G.F. Wu, and L.P. Zhang, Nanocomposite of poly (lactid acid) reinforced with cellulose nanofibrils, BioResources 5 (2010) 1811-1823.

Google Scholar

[21] X. Wen, Y. Lin, C. Han, K. Zhang, X. Ran, Y. Li, L. Dong, Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding, Journal of Applied Polymer Science 114 (2009) 3379-3388.

DOI: 10.1002/app.30896

Google Scholar

[22] A. Bouamer, N. Benrekaa, A. Younes and H. Amar, Characterization of the Polylactic acid stretched uniaxial and annealed by Raman spectrometry and Differential scanning calorimetry. IOP Conference Series.: Material Science Engineering 461(2018) 1-6.

DOI: 10.1088/1757-899x/461/1/012006

Google Scholar

[23] E. P. Elisabeta, M. Râpă, O. Popa, G. Mustatea,V. I. Popa, A. C. Mitelut, M. Elena, Polylactic Acid/Cellulose Fibres Based Composites for Food Packaging Applications, Material Plastice 4(2017) 673-677.

DOI: 10.37358/mp.17.4.4923

Google Scholar

[24] Z. Chu, T. Zhao, L. Li, J. Fan, and Y. Qin, Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles, Materials 6 (2017) 1-13.

DOI: 10.3390/ma10060659

Google Scholar

[25] I. Kim, K. Viswanathan, G. Kasi, K. Sadeghi, S. Thanakkasaranee and J. Seo, Poly (Lactic Acid)/Zno Bionanocomposite Films with Positively Charged Zno as Potential Antimicrobial Food Packaging Materials, Polymers 11 (2019) 1-17.

DOI: 10.3390/polym11091427

Google Scholar

[26] I. Restrepo, N. Benito, C. Medinam, R. V. Mangalaraja, P. Flores, L. Rodriguez-, S. lamazares, Development and characterization of polyvinyl alcohol stabilized polylactic acid/ZnO nanocomposites, Materials Research Express 4 (2017) 1-23.

DOI: 10.1088/2053-1591/aa8b8d

Google Scholar

[27] N.A. Ali, I.A. AL-Ajaj, F.T.M. Noori, Effect of Nano SiO2 on Some Mechanical Properties of Biodegradable Polylactic Acid, International Journal of Mechanical Engineering and Technology 5(2014) 1-7.

Google Scholar

[28] J.H. Wu, M.S. Yen, C.P. Wu, C.H. Li & M. C. Kuo, Effect of Biaxial Stretching on Thermal Properties, Shrinkage and Mechanical Properties of Poly (Lactic Acid) Films, Journal of Polymers and the Environment 21(2013) 303-311.

DOI: 10.1007/s10924-012-0523-5

Google Scholar

[29] I. R. Mustapa, R.A. Shanks and I. Kong, Melting Behavior and Dynamic Mechanical Properties of Poly (lactic acid)-Hemp Nanosilica Composites, Asian Transactions on Basic and Applied Sciences 3 (2013) 29-37.

Google Scholar

[30] X. Wen, One-pot route to graft long-chain polymer onto silica nanoparticles and its application for high performance poly(L-lactide) nanocomposites, The Royal Society of Chemistry 9 (2019) 13908-13915.

DOI: 10.1039/c9ra01360a

Google Scholar