[1]
F. Liu, Y.L. Hou, S. Gao, Exchange-coupled nanocomposites: chemical synthesis, characterization and applications, Chem. Soc. Rev. 43 (2014) 8098-8113.
DOI: 10.1039/c4cs00162a
Google Scholar
[2]
C.L. Lei, S.L. Tang, Y.W. Du, Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties, Ceram. Int. 42 (2016) 15511-15516.
DOI: 10.1016/j.ceramint.2016.06.204
Google Scholar
[3]
Y.M. Kang, K.S. Moon, Magnetic properties of Ce-Mn substituted M-type Sr-hexaferrites, Ceram. Int. 41 (2015) 12828-12834.
DOI: 10.1016/j.ceramint.2015.06.119
Google Scholar
[4]
J.Y. Xia, Y.L. Shen, C.Y. Xiao, W. Chen, X.H. Wu, W.W. Wu, Q.S. Wang, J.T. Li, Structural and magnetic properties of soft/hard Mn0.6Zn0.4Fe2O4/Sr0.85Ba0.15Fe12O19 core/shell composite synthesized by the ball-milling-assisted ceramic process, J. Electron Mater. 47 (2018) 6811-6820.
DOI: 10.1007/s11664-018-6584-z
Google Scholar
[5]
N.A. Algarou, Y. Slimani, M.A. Almessiere, S. Rehman, M. Younas, B. Unal, A.D. Korkmaz, M.A. Gondal, A.V. Trukhanov, A. Baykal, I. Nahvi, Developing the magnetic, dielectric and anticandidal characteristics of SrFe12O19/(Mg0.5Cd0.5Dy0.03Fe1.97O4)x hard/soft ferrite nanocomposites, J. Taiwan Inst. Chem. E. 113 (2020) 344-362.
DOI: 10.1016/j.jtice.2020.07.022
Google Scholar
[6]
X.F. Meng, Q.X. Han, Y.J. Sun, Y.F. Liu, Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19 polyaniline composite, Ceram. Int. 45 (2019) 2504-2508.
DOI: 10.1016/j.ceramint.2018.10.179
Google Scholar
[7]
D. Neupane, M. Ghimire, H. Adhikari, A. Lisfi, Synthesis and magnetic study of magnetically hard-soft SrFe12-yAlyO19/x wt.% Ni0.5Zn0.5Fe2O4 nanocomposites, Aip. Adv. 7 (2017) 1-11.
DOI: 10.1063/1.4978398
Google Scholar
[8]
V. Harikrishnan, R.E. Vizhi, A study on the extent of exchange coupling between (Ba0.5Sr0.5Fe12O19)1-x/(CoFe2O4)x magnetic nanocomposites synthesized by solgel combustion method, J. Magn. Magn. Mater. 418 (2016) 217-223.
DOI: 10.1016/j.jmmm.2016.03.037
Google Scholar
[9]
A.M. Semaida, I.G. Bordyuzhin, S.I. El-Dek, V.P. Menushenkov, A.G. Savchenko, Magnetization performance of hard/soft Nd9.6Fe80.3Zr3.7B6.4/α-Fe magnetic nanocomposites produced by surfactant-assisted high-energy ball milling, Mater. Res. Express 8 (2021) 1-11.
DOI: 10.1088/2053-1591/ac0f1b
Google Scholar
[10]
S. Erokhin, D. Berkov, Optimization of nanocomposite materials for permanent magnets: Micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains, Phys. Rev. Appl. 7 (2017) 1-15.
DOI: 10.1103/physrevapplied.7.014011
Google Scholar
[11]
M. Petrecca, B. Muzzi, S.M. Oliveri, M. Albino, N. Yaacoub, D. Peddis, C.D. Fernandez, C. Innocenti, C. Sangregorio, Optimizing the magnetic properties of hard and soft materials for producing exchange spring permanent magnets, J. Phys. D Appl. Phys. 54 (2021) 1-13.
DOI: 10.1088/1361-6463/abd354
Google Scholar
[12]
S. Chakraborty, N.S. Bhattacharyya, S. Bhattacharyya, Effect of Co substitution on absorption properties of SrCoxFe12-xO19 hexagonal ferrites based nanocomposites in X-band, J. Magn. Magn. Mater. 443 (2017) 244-251.
DOI: 10.1016/j.jmmm.2021.168817
Google Scholar
[13]
Y. Slimani, N.A. Algarou, M.A. Almessiere, A. Sadaqat, M.G. Vakhitov, D.S. Klygach, D.I. Tishkevich, A.V. Trukhanov, S. Guner, A.S. Hakeem, I.A. Auwal, A. Baykal, A. Manikandan, I. Ercan, Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties, Arab J. Chem. 14 (2021) 1-17.
DOI: 10.1016/j.arabjc.2021.102992
Google Scholar
[14]
M.A. Radmanesh, S.A.S. Ebrahimi, A. Yourdkhani, H. Khanmohammadi, Investigation of magnetic interactions in core/shell structured SrFe12O19/NiZnFe2O4 nanocomposite, J. Supercond. Nov. Magn. 25 (2012) 2757-2762.
DOI: 10.1007/s10948-011-1258-6
Google Scholar
[15]
A. Bajorek, P. Lopadczak, K. Prusik, Correlation between microstructure and magnetism in ball-milled SmCo5/α-Fe (5%wt. α-Fe) nanocomposite magnets, Materials 14 (2021) 1-20.
DOI: 10.3390/ma14040805
Google Scholar
[16]
S. Kumari, L.K. Pradhan, L. Kumar, Effect of annealing temperature on morphology and magnetic properties of cobalt ferrite nanofibers, Mater. Res. Express 6 (2019) 1-12.
DOI: 10.1088/2053-1591/ab5fa1
Google Scholar
[17]
A.D. Volodchenkov, S. Ramirez, R. Samnakay, R. Salgado, Y. Kodera, A.A. Balandin, J.E. Garay, Magnetic and thermal transport properties of SrFe12O19 permanent magnets with anisotropic grain structure, Mater Design 125 (2017) 62-68.
DOI: 10.1016/j.matdes.2017.03.082
Google Scholar
[18]
N.A. Algarou, Y. Slimani, M.A. Almessiere, A. Sadaqat, A.V. Trukhanov, M.A. Gondal, A.S. Hakeem, S.V. Trukhanov, M.G. Vakhitov, D.S. Klygach, A. Manikandan, A. Baykal, Functional Sr0.5Ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2Fe2O4) hard-soft ferrite nanocomposites: structure, magnetic and microwave properties, Nanomaterials-Basel 10 (2020) 1-18.
DOI: 10.3390/nano10112134
Google Scholar