Correlation between Composition and Magnetic Properties of SrFe12O19/Co Nanocomposite Synthesized by the High Energy Ball-Milling Process

Article Preview

Abstract:

Nanocomposites (NCs) (100-x) SrFe12O19/x Co (x = 10, 20, and 30 wt. %) were produced using the high energy ball-milling (HEBM) process. The effects of hard/semi-hard ratio and annealing temperature (800, 900, and 1000 °C) on the exchange-spring in magnetic NCs were discussed. X-ray diffraction examination showed the coexistence of M-type hexaferrite SrFe12O19 (SFO) as the hard phase and CoFe2O4 spinel ferrite (CFO) as the semi-hard phase. Using a scanning electron microscope (SEM), the morphology and elemental analysis of the NCs were analyzed. The magnetic performances were investigated via a vibrating sample magnetometer at room temperature. With increasing the CFO content and annealing temperature, the hysteresis loop became narrower and possessed semi-hard magnetic properties. The 10 wt. % Co NCs annealed at 800 °C had the highest coercivity of Hc = 4.2 kOe. These results are correlated with switching field distribution plots that have indicated the efficient exchange-spring between SFO and CFO phases NCs annealed at 800 °C. The studied samples can be a promising candidate in permanent magnets and magnetic recording media applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-85

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Liu, Y.L. Hou, S. Gao, Exchange-coupled nanocomposites: chemical synthesis, characterization and applications, Chem. Soc. Rev. 43 (2014) 8098-8113.

DOI: 10.1039/c4cs00162a

Google Scholar

[2] C.L. Lei, S.L. Tang, Y.W. Du, Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties, Ceram. Int. 42 (2016) 15511-15516.

DOI: 10.1016/j.ceramint.2016.06.204

Google Scholar

[3] Y.M. Kang, K.S. Moon, Magnetic properties of Ce-Mn substituted M-type Sr-hexaferrites, Ceram. Int. 41 (2015) 12828-12834.

DOI: 10.1016/j.ceramint.2015.06.119

Google Scholar

[4] J.Y. Xia, Y.L. Shen, C.Y. Xiao, W. Chen, X.H. Wu, W.W. Wu, Q.S. Wang, J.T. Li, Structural and magnetic properties of soft/hard Mn0.6Zn0.4Fe2O4/Sr0.85Ba0.15Fe12O19 core/shell composite synthesized by the ball-milling-assisted ceramic process, J. Electron Mater. 47 (2018) 6811-6820.

DOI: 10.1007/s11664-018-6584-z

Google Scholar

[5] N.A. Algarou, Y. Slimani, M.A. Almessiere, S. Rehman, M. Younas, B. Unal, A.D. Korkmaz, M.A. Gondal, A.V. Trukhanov, A. Baykal, I. Nahvi, Developing the magnetic, dielectric and anticandidal characteristics of SrFe12O19/(Mg0.5Cd0.5Dy0.03Fe1.97O4)x hard/soft ferrite nanocomposites, J. Taiwan Inst. Chem. E. 113 (2020) 344-362.

DOI: 10.1016/j.jtice.2020.07.022

Google Scholar

[6] X.F. Meng, Q.X. Han, Y.J. Sun, Y.F. Liu, Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19 polyaniline composite, Ceram. Int. 45 (2019) 2504-2508.

DOI: 10.1016/j.ceramint.2018.10.179

Google Scholar

[7] D. Neupane, M. Ghimire, H. Adhikari, A. Lisfi, Synthesis and magnetic study of magnetically hard-soft SrFe12-yAlyO19/x wt.% Ni0.5Zn0.5Fe2O4 nanocomposites, Aip. Adv. 7 (2017) 1-11.

DOI: 10.1063/1.4978398

Google Scholar

[8] V. Harikrishnan, R.E. Vizhi, A study on the extent of exchange coupling between (Ba0.5Sr0.5Fe12O19)1-x/(CoFe2O4)x magnetic nanocomposites synthesized by solgel combustion method, J. Magn. Magn. Mater. 418 (2016) 217-223.

DOI: 10.1016/j.jmmm.2016.03.037

Google Scholar

[9] A.M. Semaida, I.G. Bordyuzhin, S.I. El-Dek, V.P. Menushenkov, A.G. Savchenko, Magnetization performance of hard/soft Nd9.6Fe80.3Zr3.7B6.4/α-Fe magnetic nanocomposites produced by surfactant-assisted high-energy ball milling, Mater. Res. Express 8 (2021) 1-11.

DOI: 10.1088/2053-1591/ac0f1b

Google Scholar

[10] S. Erokhin, D. Berkov, Optimization of nanocomposite materials for permanent magnets: Micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains, Phys. Rev. Appl. 7 (2017) 1-15.

DOI: 10.1103/physrevapplied.7.014011

Google Scholar

[11] M. Petrecca, B. Muzzi, S.M. Oliveri, M. Albino, N. Yaacoub, D. Peddis, C.D. Fernandez, C. Innocenti, C. Sangregorio, Optimizing the magnetic properties of hard and soft materials for producing exchange spring permanent magnets, J. Phys. D Appl. Phys. 54 (2021) 1-13.

DOI: 10.1088/1361-6463/abd354

Google Scholar

[12] S. Chakraborty, N.S. Bhattacharyya, S. Bhattacharyya, Effect of Co substitution on absorption properties of SrCoxFe12-xO19 hexagonal ferrites based nanocomposites in X-band, J. Magn. Magn. Mater. 443 (2017) 244-251.

DOI: 10.1016/j.jmmm.2021.168817

Google Scholar

[13] Y. Slimani, N.A. Algarou, M.A. Almessiere, A. Sadaqat, M.G. Vakhitov, D.S. Klygach, D.I. Tishkevich, A.V. Trukhanov, S. Guner, A.S. Hakeem, I.A. Auwal, A. Baykal, A. Manikandan, I. Ercan, Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties, Arab J. Chem. 14 (2021) 1-17.

DOI: 10.1016/j.arabjc.2021.102992

Google Scholar

[14] M.A. Radmanesh, S.A.S. Ebrahimi, A. Yourdkhani, H. Khanmohammadi, Investigation of magnetic interactions in core/shell structured SrFe12O19/NiZnFe2O4 nanocomposite, J. Supercond. Nov. Magn. 25 (2012) 2757-2762.

DOI: 10.1007/s10948-011-1258-6

Google Scholar

[15] A. Bajorek, P. Lopadczak, K. Prusik, Correlation between microstructure and magnetism in ball-milled SmCo5/α-Fe (5%wt. α-Fe) nanocomposite magnets, Materials 14 (2021) 1-20.

DOI: 10.3390/ma14040805

Google Scholar

[16] S. Kumari, L.K. Pradhan, L. Kumar, Effect of annealing temperature on morphology and magnetic properties of cobalt ferrite nanofibers, Mater. Res. Express 6 (2019) 1-12.

DOI: 10.1088/2053-1591/ab5fa1

Google Scholar

[17] A.D. Volodchenkov, S. Ramirez, R. Samnakay, R. Salgado, Y. Kodera, A.A. Balandin, J.E. Garay, Magnetic and thermal transport properties of SrFe12O19 permanent magnets with anisotropic grain structure, Mater Design 125 (2017) 62-68.

DOI: 10.1016/j.matdes.2017.03.082

Google Scholar

[18] N.A. Algarou, Y. Slimani, M.A. Almessiere, A. Sadaqat, A.V. Trukhanov, M.A. Gondal, A.S. Hakeem, S.V. Trukhanov, M.G. Vakhitov, D.S. Klygach, A. Manikandan, A. Baykal, Functional Sr0.5Ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2Fe2O4) hard-soft ferrite nanocomposites: structure, magnetic and microwave properties, Nanomaterials-Basel 10 (2020) 1-18.

DOI: 10.3390/nano10112134

Google Scholar