Fiber Optics for Sensing Applications in a Review

Article Preview

Abstract:

This paper introduces a review of the use of gold nanoparticles (AuNPs) in the fabrication of optical fiber biosensors based on localized surface Plasmon resonance (LSPR) and Evanescent field absorption. The AuNPs have special properties, such as high surface/volume ratio, and intense light scattering/absorption, and stable structure. The main advantage of AuNPs in the application of the biosensor in the detection signal increasing, for especially low concentration analyses. Moreover, we illustrate some of the previous works in this field in the period from 2001-2021, which used optical fiber and AuNPs as a base in the development of various biosensors and all exhibited differently limits of detection, sensitivity, and good performances to its target detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-76

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Su, S. Li, Y.Jin, Z. Xian, D. Yang, W. Zhou, F. Mangaran, F. Leung, G. Sithamparanathan, K. Kerman, Nanomaterial-based biosensors for biological detections. Dovepress. 3 (2017) 19–29.

DOI: 10.2147/ahct.s94025

Google Scholar

[2] N. Mavrogiannis, F. Crivellari, ZR. Gagnon, Label-free biomolecular detection at electrically displaced liquid interfaces using interfacial electrokinetic transduction (IET). Biosens Bioelectron. 77 (2016) 790–798.

DOI: 10.1016/j.bios.2015.10.045

Google Scholar

[3] Z. H Tawfiq, M. A Fakhri, S. A Adnan, Photonic Crystal Fibres PCF for Different Sensors in Review, IOP Conf. Series: Materials Science and Engineering 454(1) (2018) 012173.

DOI: 10.1088/1757-899x/454/1/012173

Google Scholar

[4] LC. Jr. Clark, R. Wolf, D. Granger, Z. Taylor, Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 6(3) (1953) 189–193.

DOI: 10.1152/jappl.1953.6.3.189

Google Scholar

[5] K.S. Shibib, M.A. Munshid, M.J. Abdul Razzak, L.H. Salman, Transient analytical solution of temperature distribution and fracture limits in pulsed solid-state laser rod, Thermal science, 21(3) (2017) 1213-1222.

DOI: 10.2298/tsci141011090s

Google Scholar

[6] J. Wang, Electrochemical Glucose Biosensors. Chem Rev. 108(2) (2008) 814–825.

Google Scholar

[7] R. Taylor, C. Sylvain, O. Todd, Small particle, big impacts: a review of the diverse applications of nanofluids. J Appl Phys. 113(1) (2013) 011301.

Google Scholar

[8] M.H. Mohsin, N.H. Numan,  E.T. Salim,  M.A. Fakhri, Physical properties of sic nanostructure for optoelectronics applications, Journal of Renewable Materials, 9(9) (2021) 1519-1530.

DOI: 10.32604/jrm.2021.015465

Google Scholar

[9] V. T. Huong, N. T. T. Phuong, N. T. Tai, N. T. An,V. D. Lam, D. H. Manh, T. T. K. Chi, N. X. D. Mai V.D. Phung , N. H. T. Tran, Gold Nanoparticles Modified a Multimode Clad-Free Fiber for Ultrasensitive Detection of Bovine Serum Albumin. Hindawi. 10.1155 (2021) 5530709.

DOI: 10.1155/2021/5530709

Google Scholar

[10] S. Zeng, K. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, A review on functionalized gold nanoparticles for biosensing applications, Plasmonics. 6 (2011) 491–506.

DOI: 10.1007/s11468-011-9228-1

Google Scholar

[11] M. M Hassan, M. A Fakhri, S. A Adnan, 2-D of Nano Photonic Silicon Fabrication for Sensing Application, Digest Journal of Nanomaterials and Biostructures 14(4) (2019) 873-878.

Google Scholar

[12] P. K. Jain, K. S. Lee, I. H. El-sayed, and M. A. El-sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, Journal of Physical Chemistry B. 110 (2006) 7238–7248.

DOI: 10.1021/jp057170o

Google Scholar

[13] K. Saha, S. Agasti, C. Kim, X. Li, and V. M. Rotello, Gold Nanoparticles in Chemical and Biological Sensing, Chemical Reviews. 112 (2012) 2739–2779.

DOI: 10.1021/cr2001178

Google Scholar

[14] K.S. Shibib, M.M. Tahir, H.I. Qatta, Analytical model of transient temperature and thermal stress in continuous wave double-end-pumped laser rod: Thermal stress minimization study, Pramana - Journal of Physics, 79(2) (2012) 287-297.

DOI: 10.1007/s12043-012-0295-4

Google Scholar

[15] P. Q. T. Do, V. T. Huong, N. T. T. Phuong, The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region, RSC Advances. 10, (2020) 30858–30869.

DOI: 10.1039/d0ra05271j

Google Scholar

[16] L. Chau, Y. Lin, S. Cheng, and T. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance, Sensors and Actuators B: Chemical. 113 (2006) 100–105.

DOI: 10.1016/j.snb.2005.02.034

Google Scholar

[17] S. F. H. Alhasan, B.A. Bader, E.T. Salim, Surface morphology and roughness of silver oxide prepared employing pulsed laser at optimum laser fluence, Materials Today: Proceedings, 42 (2021) 2845-2848.

DOI: 10.1016/j.matpr.2020.12.732

Google Scholar

[18] J. R. L. Guerreiro, M. Frederiksen, V. E. Bochenkov, V. de Freitas, M. G. Ferreira Sales, and D. S. Sutherland, Multifunctional biosensor based on localized surface plasmon resonance for monitoring small molecule–protein interaction, ACS Nano. 8 (2014) 7958–7967.

DOI: 10.1021/nn501962y

Google Scholar

[19] K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry.58 (2007) 267–297.

DOI: 10.1146/annurev.physchem.58.032806.104607

Google Scholar

[20] Y. Wang, J. Zhou, and J. Li, Construction of Plasmonic Nano- Biosensor-Based Devices for Point-of-Care Testing, Small Methods, 1(2017) 1700197.

DOI: 10.1002/smtd.201700197

Google Scholar

[21] S. Unser, I. Bruzas, J. He, and L. Sagle, Localized surface plasmon resonance biosensing: current challenges and approaches, Sensors,15 ( 2015) 15684–15716.

DOI: 10.3390/s150715684

Google Scholar

[22] K.S. Shibib, M.A. Minshid, M.M. Tahir, Finite element analysis of spot laser of steel welding temperature history, Thermal Science 13(4) (2009) 143-150.

DOI: 10.2298/tsci0904143s

Google Scholar

[23] M. Lu, H. Zhu, C. G. Bazuin, W. Peng, and J. F. Masson, Polymer- templated gold nanoparticles on optical fibers for enhanced-sensitivity localized surface plasmon resonance biosensors, ACS Sensors. 4 (2019) 613–622.

DOI: 10.1021/acssensors.8b01372

Google Scholar

[24] H. Jeong, N. Erdene, J. Park, D. Jeong, H. Lee, and S. Lee, Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor Biosensors and Bioelectronics. 39 (2013) 346–351.

DOI: 10.1016/j.bios.2012.08.013

Google Scholar

[25] A. L. Abed, W.K. Khalef, E.T. Salim, Synthesis, Characterization and Optoelectronic device application of ZnO nano structure Journal of Physics: Conference Series, 1795(1) (2021) 012031.

DOI: 10.1088/1742-6596/1795/1/012031

Google Scholar

[26] M. Vidotti, R.F. Carvalhal, R.K. Mendes, D. C. M. Ferreira , L. T. Kubota, Biosensors Based on Gold Nanostructures, J. Braz. Chem. Soc. 22 (2011) 3-20.

DOI: 10.1590/s0103-50532011000100002

Google Scholar

[27] IUPAC 1996 Electrochemical Biosensors: Proposed Definitions and Classification. Synopsis of report, as presented in reference 24.

Google Scholar

[28] H. S Ali, M. A Fakhri, An Overview of Au & Photonic Crystal Fiber of Sensors, Materials Science Forum, 1002 (2020) 282-289.

DOI: 10.4028/www.scientific.net/msf.1002.282

Google Scholar

[29] D.R. Thévenot, K. Toth, R. A. Durst, G. S.Wilson, Biosens, Bioelectron. 16(2001) 121.

Google Scholar

[30] Y. W. Fen, W. M. M. Yunus, N. A. Yusof, Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer, Sensors and Actuators B . 171– 172 (2012) 287– 293.

DOI: 10.1016/j.snb.2012.03.070

Google Scholar

[31] K.S. Shibib, M.A. Munshid, K. Hubiter, Analytical model of transient thermal effect on convectional cooled end-pumped laser rod, Pramana - Journal of Physics, 81(4) (2013) 603-615.

DOI: 10.1007/s12043-013-0600-x

Google Scholar

[32] M.C. Aragoni, M. Area, F. Demartin, F.A. Devillanova, F. Isaia, A. Garau, V. Lippolis, F. Jalali, U. Papke, M. Shamsipur, L. Tei, A. Yari, G. Verani, Fluorometric Chemosensors. Interaction of toxic heavy metal ions PbII , CdII , and HgII with novel mixed-donor phenanthroline-containing macrocycles: spectrofluorometric, conductometric, and crystallographic studies, Inorg. Chem. 41 (2002) 6623–6643.

DOI: 10.1021/ic020270d

Google Scholar

[33] M.A. Fakhri,  F.G. Khalid, E.T. Salim, Influence of annealing temperatures on Nb2O5 nanostructures prepared using Pulsed Laser Deposition method, Journal of Physics: Conference Series, 1795(1) 2021 012063.

DOI: 10.1088/1742-6596/1795/1/012063

Google Scholar

[34] X.B. Zhang, C.C. Guo, Z.Z. Li, G.L. Shen, R.Q. Yu, An optical fiber chemical sensor for mercury ions based on a porphyrin dimer, Anal. Chem. 74 (2002) 821–825.

DOI: 10.1021/ac0109218

Google Scholar

[35] JM Taha, HN Azeez, RA Basheer, MA Fakhri, AW Abdulwahab‏, Effects of oxygen pressure on the structural and morphological properties of ZnO prepared by RPLD AIP Conference Proceedings 2213(1) (2020) 020238.

DOI: 10.1063/5.0000203

Google Scholar

[36] Y. Kim, R.C. Johnson, J.T. Hupp, Gold nanoparticle-based sensing of spectroscopically silent heavy metal ions, Nano Lett. 1 (2001) 165–167.

DOI: 10.1021/nl0100116

Google Scholar

[37] C. Li, Z. Li, S. Li, Y.Zhang, B. Sun, Y. Yu, H. Ren, S. Jiang, W. Yuei, LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films, Optics Express. 28 (2020) 6071.

DOI: 10.1364/oe.385128

Google Scholar

[38] E.T. Salim,  F.G. Khalid, M.A. Fakhri, R.S. Mahmood, Laser wavelength effects on the optical, structure, and morphological properties of nano HfO2structures, Materials Today: Proceedings, 42 (2021) 2422-2425.

DOI: 10.1016/j.matpr.2020.12.551

Google Scholar

[39] Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer, Sensors (Basel). 10(4) (2010) 3585–3596.

DOI: 10.3390/s100403585

Google Scholar

[40] Y. Lin, Y. Zou, Y. Mo, J. Guo, R. G. Lindquist, E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing, Sensors (Basel). 10(10) (2010) 9397–9406.

DOI: 10.3390/s101009397

Google Scholar

[41] N.K. Hassan,  M.A. Fakhri, E.T. Salim, M.A. Hassan, Gold nano particles based optical fibers for a different sensor in a review Materials Today: Proceedings, 42 (2021) 2769-2772.

DOI: 10.1016/j.matpr.2020.12.719

Google Scholar

[42] T. Ghodselahi, T. Neishaboorynejad, S. Arsalani, Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling, Appl. Surf. Sci. 343 (2015) 194–201.

DOI: 10.1016/j.apsusc.2015.01.219

Google Scholar

[43] J. Cao, M. H. Tu, T. Sun, K. T. V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor, Sens. Actuators, B. 181(2013) 611–619.

DOI: 10.1016/j.snb.2013.02.052

Google Scholar

[44] M. A Fakhri, ZH Tawfiq, SA Adnan‏, Gold nanoparticles in ethanol deposited on PCF for refractive index sensors, AIP Conference Proceedings 2213 (1) (2020) 020245.

DOI: 10.1063/5.0000213

Google Scholar

[45] A. J. Haes, R. P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors, Anal. Bioanal. Chem. 379(7-8) (2004) 920–930.

DOI: 10.1007/s00216-004-2708-9

Google Scholar

[46] J. Jatschka, A. Dathe, A. Csáki, W. Fritzsche, O. Stranik, Propagating and localized surface plasmon resonance sensing — A critical comparison based on measurements and theory, Sens. Biosensing Res. 7 (2016) 62–70.

DOI: 10.1016/j.sbsr.2016.01.003

Google Scholar

[47] M. N. A. K. Alghurabi, R. S. Mahmood, E.T. Salim, S.F. H. Alhasan, F.G. Khalid, Structure, optical, and morphological investigations of nano copper oxide prepared using RPLD at different laser wavelength effects Materials Today: Proceedings, 42 (2021) 2497-2501.

DOI: 10.1016/j.matpr.2020.12.569

Google Scholar

[48] M. S. Rodrigues, D. Costa, R. P. Domingues, M. Apreutesei, P. Pedrosa, N. Martin, V. M. Correlo, R. L. Reis, E. Alves, N. P. Barradas, P. Sampaio, J. Borges, F. Vaz, Optimization of nanocomposite Au/TiO 2 thin films towards LSPR optical-sensing, Appl. Surf. Sci. 438 (2018) 74–83.

DOI: 10.1016/j.apsusc.2017.09.162

Google Scholar

[49] V. V. Sai, T. Kundu, S. Mukherji, Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor, Biosens. Bioelectron. 24(9) (2009) 2804–2809.

DOI: 10.1016/j.bios.2009.02.007

Google Scholar

[50] L. Z Mohammed, M. A Fakhri, A. K Abass‏, An overview of optical modulator based on nanophotonic lithium niobate film‏, AIP Conference Proceedings 2213 (1) (2020) 020231.

Google Scholar

[51] T. Ghodselahi, S. Hoornam, M. A. Vesaghi, B. Ranjbar, A. Azizi, H. Mobasheri, Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction, Appl. Surf. Sci. 314 (2014) 138–144.

DOI: 10.1016/j.apsusc.2014.06.095

Google Scholar

[52] A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, Programmable computing with a single magnetoresistive element, Nature. 425(6957) (2003) 485–487.

DOI: 10.1038/nature02014

Google Scholar

[53] E.T. Salim, R. A. Ismail & H. T. Halbos, Deposition geometry effect on structural, morphological and optical properties of Nb2O5 nanostructure prepared by hydrothermal technique. Appl. Phys. A 126 (2020) 891.

DOI: 10.1007/s00339-020-03955-y

Google Scholar

[54] F. Guo, L. Yan, H. Guo, L. Li, B. Hu, Y. Zhao, J. Yong, Y. Hu, X. Wang, Y. Wei, W. Wang, R. Li, J. Yan, X. Zhi, Y. Zhang, H. Jin, W. Zhang, Y. Hou, P. Zhu, J. Li, L. Zhang, S. Liu, Y. Ren, X. Zhu, L. Wen, Y. Q. Gao, F. Tang, J. Qiao, The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells, Cell. 161(6) (2015) 1437–1452.

DOI: 10.1016/j.cell.2015.05.015

Google Scholar

[55] M. U. Ahmed, I. Saaem, P. C. Wu, A. S. Brown, Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine, Crit. Rev. Biotechnol. 34(2) (2014) 180–196.

DOI: 10.3109/07388551.2013.778228

Google Scholar

[56] M.A. Hassan,  B.M. Al-Nedawe, M.A. Fakhri, Embedded optical fiber link interferometer sensors for snapshot surface inspection using the synthetic wavelength technique Applied Optics 60(8) (2021) 2339-2347.

DOI: 10.1364/ao.417370

Google Scholar

[57] A. Urrutia, J. Goicoechea, F. J. Arregui, Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings, J. Sens. 2015 (2015) 1–18.

DOI: 10.1155/2015/805053

Google Scholar

[58] Z. Jiang, J. Dong, S. Hu, Y. Zhang, Y. Chen, Y. Luo, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, Z. Chen, High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid, Opt. Lett. 43(19) (2018) 4743–4746.

DOI: 10.1364/ol.43.004743

Google Scholar

[59] E.T. Salim, J.A. Saimon,  M.K. Abood, M.A, Fakhri, Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis, Optical and Quantum Electronics 52(10) (2020) 463.

DOI: 10.1007/s11082-020-02588-y

Google Scholar

[60] Y. Wang, J. Dong, Y. Luo, J. Tang, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, Indium Tin Oxide Coated Two-Mode Fiber for Enhanced SPR Sensor in Near-Infrared Region, IEEE Photonics J. 9(6) (2017) 1–9.

DOI: 10.1109/jphot.2017.2757513

Google Scholar

[61] L. Nie, F. Liu, P. Ma, X. Xiao, Applications of Gold Nanoparticles in Optical Biosensors, Biomedical Nanotechnology. 10 (2014) 2700–2721.

DOI: 10.1166/jbn.2014.1987

Google Scholar

[62] H.S. Ali, M.A. Fakhri, Z. Khalifa, Optical and Structural Properties of the Gold Nanoparticles Ablated by Laser Ablation in Ethanol for Biosensors Journal of Physics: Conference Series 1795(1) (2021) 012065.

DOI: 10.1088/1742-6596/1795/1/012065

Google Scholar

[63] Z. Wang, R. Hou, Z. Zheng, and J. Zhu, J. Nanosci. A highly sensitive voltage interrogation method using electro-optically tunable waveguide coupled surface plasmon resonance sensors, Nanotechnol. 13 (2013) 1476.

DOI: 10.1166/jnn.2013.6102

Google Scholar

[64] E. E. Bedford, J. Spadavecchia, C. M. Pradier, F. X. Gu, Surface plasmon resonance biosensors incorporating gold nanoparticles, Macromol. Biosci. 12 (2012) 724.

DOI: 10.1002/mabi.201100435

Google Scholar

[65] AD Faisal, RA Ismail, WK Khalef, ET Salim‏, Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications‏, Optical and Quantum Electronics 52 (2020)  212.

DOI: 10.1007/s11082-020-02329-1

Google Scholar

[66] D. Yang, J. Ma, M. Peng, Q. Zhang, Y. Luo, W. Hui, T. Jin, Y. Cui, Building nanoSPR biosensor systems based on gold magnetic composite nanoparticles, J. Nanosci. Nanotechnol. 13 (2013) 5485.

DOI: 10.1166/jnn.2013.7515

Google Scholar

[67] HM. Kim, JH. Park, SK. Lee, Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor, scientific reports . 9 (2019) 15605.

DOI: 10.1038/s41598-019-52056-1

Google Scholar

[68] M. A Fakhri, M. J. A.Razzaq, A. A. Alwahib, W. H Muttlak, Theoretical study of a pure LinbO3/Quartz waveguide coated gold nanorods using supercontinuum laser source, Optical Materials 109 (2020) 110363.

DOI: 10.1016/j.optmat.2020.110363

Google Scholar

[69] S. Kumari , R. S. Moirangthem, Development of cost-effective plasmonic biosensor using partially embedded gold nanoparticles for detection of immunoglobulin proteins, Materials Research Express. 5 (2018) 025031.

DOI: 10.1088/2053-1591/aaaddf

Google Scholar

[70] G. Zhu, L. Singh, Y. Wang, R. Singh, B. Zhang, F Liu, B. K. Kaushik, and S. Kumar, Tapered Optical Fiber-Based LSPR Biosensor for Ascorbic Acid Detection, Photonic Sensors, (2020) 13320-020-0605-2.

DOI: 10.1007/s13320-020-0605-2

Google Scholar

[71] H Asady, ET Salim, RA Ismail‏, Some critical issues on the structural properties of Nb2O5 nanostructure film deposited by hydrothermal technique, AIP Conference Proceedings, 2213 (1) (2020) 020183.

DOI: 10.1063/5.0000214

Google Scholar

[72] V. T. Huong, H. K. Thi Ta, N. X. D. Mai, T. T. V. Tran, B. X. Khuyen, K. T. L. Trinh, N. Y. Lee, B. T. Phan,  N. H. T. Tran, Development of a highly sensitive sensor chip using optical diagnostic based on functionalized plasmonically active AuNPs, Nanotechnology. 32 (2021) 335505.

DOI: 10.1088/1361-6528/ac0080

Google Scholar

[73] K. Liu, J. Zhang, J. Jiang, T. Xu, S. Wang, P. Chang, Z. Zhang, J. Ma,  T. Liu, Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe2@Au nanoparticles-polydopamine, Biomed Opt Express. 11(12) (2020) 6840–6851.

DOI: 10.1364/boe.409535

Google Scholar

[74] MT Awayiz, ET Salim‏, Silver oxide nanoparticle, effect of chemical interaction temperatures on structural properties and surface roughness‏, AIP Conference Proceedings 2213 (1) (2020) 020247‏.

DOI: 10.1063/5.0000215

Google Scholar

[75] S. Kumar, B. K. Kaushik, R. Singh, N.K. Chen, Q. S. Yang, X. Zhang, W. Wang, B. Zhang, LSPR-based cholesterol biosensor using a tapered optical fiber structure Biomedical Optics Express. 10 (2019) 2150-2160.

DOI: 10.1364/boe.10.002150

Google Scholar

[76] S. P. Dash , S. K. Patnaik , S.K. Tripathy, Investigation of a low cost tapered plastic fiber optic biosensor based on manipulation of colloidal gold nanoparticles, Optics Communications. 437 (2019) 388–391.

DOI: 10.1016/j.optcom.2018.12.088

Google Scholar

[77] M. T. Awayiz, E. T Salim, Photo Voltaic Properties of Ag2O/Si Heterojunction Device: Effect of Substrate Conductivity, Materials Science Forum 1002 (2020) 200-210.

DOI: 10.4028/www.scientific.net/msf.1002.200

Google Scholar

[78] M. Sundaray, C. Das, S. K. Tripathy, Sensing application of an optical fiber dip coated with l-cystein ethyl ester hydrochloride capped znte quantum dots, Mater. Sci. Poland. 34(3) (2016) 665–668.

DOI: 10.1515/msp-2016-0095

Google Scholar

[79] H. Latifi, M. I. Zibaii, S. M. Hosseini, P. Jorge, Nonadiabatic tapered optical fiber for biosensor applications, Photonic Sensors. 2 (4) (2012) 340–356.

DOI: 10.1007/s13320-012-0086-z

Google Scholar

[80] E. T. Salim, R. A Ismail, H. T Halbos, Materials Research Express, Growth of Nb2O5 film using hydrothermal method: effect of Nb concentration on physical properties, 6(11) (2019) 116429.

DOI: 10.1088/2053-1591/ab47c2

Google Scholar

[81] S. E. Skelton, M. Sergides, R. Patel, E. Karczewska, O. M. Marago, P. H. Jones, Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers, J. Quant. Spectrosc. Radiat. Transfer. 113 (2012) 2512–2520.

DOI: 10.1016/j.jqsrt.2012.06.005

Google Scholar

[82] R. Slavik, J. Ctyroky, E. Brynda, spectral fiber optic sensor based on surface Plasmon resonance, Sensors Actuators B. 74 (2001) 106–111.

DOI: 10.1016/s0925-4005(00)00718-8

Google Scholar

[83] E. T Salim, MT Awayiz, RO Mahdi, Tea Concentration Effect on the Optical, Structural, and Surface Roughness of Ag2O Thin films, Digest Journal of Nanomaterials and Biostructures, 14(4) (2019) 1151-1159.

Google Scholar

[84] B. Ramakrishna, V.V.R. Sai, Evanescent wave absorbance based U-bent fiber probe forimmunobiosensor with gold nanoparticle labels, Sensors and Actuators B. 226 (2016) 184–190.

DOI: 10.1016/j.snb.2015.11.107

Google Scholar

[85] M Abood, ET Salim, JA Saimon, Optical Investigations of Nb2O5 at Different Teamperatures for Optoelectronic Devices, Journal of Ovonic Research, 15(2) (2019) 109 – 115.

Google Scholar

[86] M. S. Al Wazny, E. T. Salim, B. A. Bader and M. A. Fakhry, Synthesis of Bi2O3 films, studying their optical, structural, and surface roughness properties, IOP Conference Series Materials Science and Engineering 454(1) (2018) 012160.

DOI: 10.1088/1757-899x/454/1/012160

Google Scholar

[87] H.H. Hassen, E.T. Salim, J.M. Taha, R.O. Mahdi, N.H. Numan, F.G. Khalid, M.A. Fakhri, Fourier transform infrared spectroscopy and photo luminance results for Zno NPs prepared at different preparation condition using LP-PLA technique, International Journal of Nanoelectronics and Materials, 11(Special Issue BOND21), (2018) 65-72.

Google Scholar

[88] M. Abdul Muhsien, E. T. Salim, Y. Al-Douri, A. F. Sale, I. R. Agool, Synthesis of SnO2 nanostructures employing Nd:YAG laser, Applied Physics A: Materials Science and Processing 120(2) (2015) 725-730.

DOI: 10.1007/s00339-015-9249-2

Google Scholar

[89] M.A.M. Hassan, M.F.H. Al-Kadhemy, E.T. Salem, Effect irradiation time of Gamma ray on MSISM (Au/SnO2/SiO2/Si/Al) devices using theoretical modeling, International Journal of Nanoelectronics and Materials, 8(2) (2014) 69-82.

Google Scholar

[90] M. A. Muhsien, E. T. Salim, and I. R. Agool, Preparation and characterization of (Au/n-SnO2 /SiO2/Si/Al) MIS device for optoelectronic application, International Journal of Optics, 2013 (2013) Article ID 756402, 9 pages.

DOI: 10.1155/2013/756402

Google Scholar

[91] R. A. Ismail, B. G. Rasheed, E. T. Salm, M. Al-Hadethy, Transparent and conducting ZnO films prepared by reactive pulsed laser deposition, Journal of Materials Science: Materials in Electronics 18(4) (2007) 397-400.

DOI: 10.1007/s10854-006-9046-y

Google Scholar