Design Criteria for Masonry Reinforcement with Composite Reinforced Mortars (CRM)

Article Preview

Abstract:

There is an emerging need to upgrade historic masonry buildings and infrastructures which are most vulnerable to earthquakes. An objective of a long-term research program at Perugia University, Italy was developing design criteria for masonry reinforcement using a new class of materials, using Composite Reinforced Mortars (CRM). These are typically made of fiberglass meshes embedded into a cementitious or lime mortar, which offers higher sustainability features, in terms of vapour permeability and compatibility with masonry, lower costs, and better performance at high temperatures, compared to more traditional steel rebar jacketing or epoxy-bonded composites. These design criteria have been based on a comprehensive experimental and numerical research plan that included a study of the influence of reinforcing material, coating and wall thickness, and associated masonry strength and elastic properties, and the interaction of different stress states on bond behavior at interface masonry-to-coating. A design equation suitable for ultimate load design has been developed. Finally, analytical models regarding the lateral capacity of shear walls are briefly discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

498-504

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Gattesco, A. Dudine, Effectiveness of masonry strengthening technique made with a GFRP-mesh-reinforced mortar coating, Proc. 8th Int. Masonry Conference, 4-7 July 2010, Dresden, Germany.

DOI: 10.1007/s10518-014-9684-z

Google Scholar

[2] N. Gattesco, A. Dudine, Il rinforzo di murature esistenti con intonaco e rete in GFRP, Structural, 164 (2010) 50-61, (in Italian).

Google Scholar

[3] N. Gattesco, A. Dudine, A GFRP mesh strengthening technique applied to ancient masonry walls, Proc. 5th International Conference on Advanced Composites in Construction 2011 - ACIC 2011, 6-8 Sept. 2011, Coventry, U.K.

Google Scholar

[4] M. Ashraf, A. Khan, A. Naseer, Q. Ali, B. Alam, Seismic behavior of unreinforced and confined brick masonry walls before and after ferrocement overlay retrofitting. International Journal of Architectural Heritage 6 (2012) 665–688.

DOI: 10.1080/15583058.2011.599916

Google Scholar

[5] M. Maalej, V.W.J. Lin, M.P. Nguyen, S.T. Quek, Engineered cementitious composites for effective strengthening of unreinforced masonry walls. Engineering Structures, 32 (2010) 2432-2439.

DOI: 10.1016/j.engstruct.2010.04.017

Google Scholar

[6] P. Rocchi, A. Ambrosi, F. Braga. Atlante del consolidamento degli edifici storici. Proctor, 2008, (in Italian).

Google Scholar

[7] A. Giuffrè, A. Sicurezza e consevazione dei centri storici: il caso Ortigia: codice di pratica per gli interventi antisismici nel centro storico. Laterza, 2000, (in Italian).

DOI: 10.4995/thesis/10251/192110

Google Scholar

[8] ICOMOS, International Scientific Committee for Analysis and Restoration of Structures of Architectural Heritage. Recommendations for the analysis, conservation and structural restoration of architectural heritage, Guidelines of ICOMOS 14th General Assembly, Victoria Falls, US (2003).

DOI: 10.1080/13556207.2007.10785001

Google Scholar

[9] A. Borri, G. Castori, M. Corradi, R. Sisti, Tecniche innovative di rinforzo di murature storiche. Proc. 15th Conference ANIDIS L'Ingegneria Sismica in Italia, 30 June – 4 July 2013, Padova, Italy (in Italian).

Google Scholar

[10] E. Zanello, Rinforzo strutturale e conservazione: esempio applicativo su edifici storici in tufo, Recupero e Conservazione Magazine, 7-8 (2017) 72-82 (in Italian).

Google Scholar

[11] L. Righetti, V. Edmondson, M. Corradi, A. Borri, A. Fibreglass grids as sustainable reinforcement of historic masonry, Materials, 9 (2016) 603.

DOI: 10.3390/ma9070603

Google Scholar

[12] A. Borri, G. Castori, M. Corradi, A. De Maria, A method for the analysis and classification of historic masonry. Bulletin of Earthquake Engineering 13 (2015) 2647จC2665.

DOI: 10.1007/s10518-015-9731-4

Google Scholar

[13] A. Borri, M. Corradi, A. De Maria, R. Sisti, Calibration of a visual method for the analysis of the mechanical properties of historic masonry, Procedia Structural Integrity 11 (2018) 418-427.

DOI: 10.1016/j.prostr.2018.11.054

Google Scholar

[14] ASTM E519 / E519M Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, (2010).

Google Scholar

[15] M. Corradi, A. Borri, G. Castori, R. Sisti, Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids, Composites Part B: Engineering, 64 (2014) 33-42.

DOI: 10.1016/j.compositesb.2014.03.022

Google Scholar

[16] RILEM LUMB6-Diagonal tensile strength tests of small wall specimens. Tech Rep, RILEM, (1994).

DOI: 10.1201/9781482271362-309

Google Scholar

[17] ANSYS, Engineering Simulation Software, Fluent 14.0 user's guide. ANSYS FLUENT Inc, (2011).

Google Scholar

[18] G. Castori, A. Borri, M. Corradi, FEM analysis of masonry walls reinforced with traditional strengthening techniques. 10th International Masonry Conference, 2018. Milan, Italy.

Google Scholar

[19] Italian Building Code, 2018. Aggiornamento delle Norme tecniche per le costruzioni (No. 8). Act 17 Jan. 2018, Gazzetta Ufficiale No. 42, (in Italian).

Google Scholar

[20] Italian Building Code, Guidelines, Istruzioni per l'applicazione delle «Nuove Norme Tecniche per le Costruzioni» di cui al decreto ministeriale 17 gennaio 2018, (in Italian).

Google Scholar