Bio-Inspired Hierarchical Porous TiO2 for Photodegradation of Organic Pollutant under Solar Irradiation

Article Preview

Abstract:

Photo-degradation of organic pollutants is of immense importance for environmental protection. The key is low-cost photocatalysts of high efficiency. Templating approach is attractive to gain hierarchical porous photocatalysts with high surface area, while is usually stuck by the limited types of desirable templates, in particular those with sophisticated microstructures. Herein, we showed a bio-inspired templating strategy that was applied to fabricate an efficient TiO2 photocatalyst with a unique hierarchical porous structure. Taking rape-pollen grains as a typical example of bio-templates, a process combining hydrothermal treatment with calcination was developed to grow TiO2 nanoparticles of 6-14 nm on the templates and subsequently to remove the organic biotemplates. As-obtained TiO2 were micro-sized spheres or ellipsoids that were surrounded by open tubular arrays. The surface area was as large as ~175 m2/g. For photodegradation, the rape-pollen-grains-architectured TiO2 has a rate (k) of 0.150 min-1, which is 10.9 times faster than the non-templated TiO2. The superior photocatalytic activity should be ascribed to the unique hierarchical porous structures, which provided interconnected channels for efficient mass transport and a large surface area for fast reaction. Our work demonstrates an effective method, namely bioinspired templating, for the scalable synthesis of efficient photocatalysts. Considering the structural diversity of pollen grains, this work may inspire others on the research of photo-response materials that rely on morphology optimization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-221

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Weng, B.; Qi, M.-Y.; Han, C.; Tang, Z.-R.; Xu, Y.-J., ACS Catalysis 2019, 9 (5), 4642-4687.

Google Scholar

[2] Setvin, M.; Shi, X.; Hulva, J.; Simschitz, T.; Parkinson, G. S.; Schmid, M.; Di Valentin, C.; Selloni, A.; Diebold, U., ACS Catalysis 2017, 7 (10), 7081-7091.

DOI: 10.1021/acscatal.7b02003

Google Scholar

[3] Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z., Catalysts 2019, 9 (2).

Google Scholar

[4] Wang, S.; Liu, G.; Wang, L., Chem Rev 2019, 119 (8), 5192-5247.

Google Scholar

[5] Han, Q.; Wu, C.; Jiao, H.; Xu, R.; Wang, Y.; Xie, J.; Guo, Q.; Tang, J., Advanced Materials 2021, 2008180.

Google Scholar

[6] Gupta, V. K.; Lorke, M.; Frauenheim, T.; Deák, P., The Journal of Physical Chemistry C (2021).

Google Scholar

[7] Wang, X.; Sun, M.; Murugananthan, M.; Zhang, Y.; Zhang, L., Applied Catalysis B-Environmental 2020, 260.

Google Scholar

[8] Zhang, X.; Chen, J.; Jiang, S.; Zhang, X.; Bi, F.; Yang, Y.; Wang, Y.; Wang, Z., Journal of Colloid and Interface Science 2021, 588, 122-137.

Google Scholar

[9] Liang, M.; Li, X.; Jiang, L.; Ran, P.; Wang, H.; Chen, X.; Xu, C.; Tian, M.; Wang, S.; Zhang, J., Applied Catalysis B: Environmental 2020, 277, 119231.

Google Scholar

[10] He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J., Chinese Journal of Catalysis 2020, 41 (1), 9-20.

Google Scholar

[11] Xiu, Z.; Guo, M.; Zhao, T.; Pan, K.; Xing, Z.; Li, Z.; Zhou, W., Chemical Engineering Journal 2020, 382.

Google Scholar

[12] Lan, K.; Wang, R.; Wei, Q.; Wang, Y.; Hong, A.; Feng, P.; Zhao, D., Angewandte Chemie 2020, 132 (40), 17829-17836.

DOI: 10.1002/ange.202007859

Google Scholar

[13] Yang, C.; Chen, S.; Su, H.; Zhang, H.; Tang, J.; Guo, C.; Song, F.; Zhang, W.; Gu, J.; Liu, Q., Frontiers of Materials Science 2019, 13 (2), 126-132.

Google Scholar

[14] Chen, S.; Yang, C.; Wu, L.; Su, H.; Zhu, Y.; Li, G.; Song, F.; Zhang, W.; Gu, J.; Liu, Q., Journal of the American Ceramic Society (2019).

Google Scholar

[15] Guan, Y.; Su, H.; Yang, C.; Wu, L.; Chen, S.; Gu, J.; Zhang, W.; Zhang, D., Sci Rep 2018, 8 (1), 9261.

Google Scholar

[16] Yoon, J.-L.; Weiss, P. S.; Cho, N.-J., ACS Nano 2018, 12 (6), 5073-5077.

Google Scholar

[17] Wu, L.; He, J.; Shang, W.; Deng, T.; Gu, J.; Su, H.; Liu, Q.; Zhang, W.; Zhang, D., Advanced Optical Materials 2016, 4 (2), 195-224.

DOI: 10.1002/adom.201500428

Google Scholar

[18] Song, F.; Su, H.; Chen, J.; Moon, W.-J.; Lau, W. M.; Zhang, D., Journal of Materials Chemistry 2012, 22 (3), 1121-1126.

Google Scholar

[19] Zhou, H.; Li, P.; Liu, J.; Chen, Z.; Liu, L.; Dontsova, D.; Yan, R.; Fan, T.; Zhang, D.; Ye, J., Nano Energy 2016, 25, 128-135.

Google Scholar

[20] Lee, K.; Yoon, H.; Ahn, C.; Park, J.; Jeon, S., Nanoscale 2019, 11 (15), 7025-7040.

Google Scholar

[21] Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J., Adv Mater 2019, 31 (6), e1802981.

Google Scholar

[22] Liu, S.; Gordiichuk, P.; Wu, Z. S.; Liu, Z.; Wei, W.; Wagner, M.; Mohamed-Noriega, N.; Wu, D.; Mai, Y.; Herrmann, A.; Mullen, K.; Feng, X., Nat Commun 2015, 6, 8817.

DOI: 10.1038/ncomms9817

Google Scholar

[23] Li, B.; Xi, B.; Wu, F.; Mao, H.; Liu, J.; Feng, J.; Xiong, S., Advanced Energy Materials 2019, 9 (8).

Google Scholar

[24] Kohtani, S.; Kawashima, A.; Miyabe, H.,. Catalysts 2017, 7 (10), 303.

Google Scholar