Progress in the Application of MOFs in the Field of Atmospheric Environment

Article Preview

Abstract:

Since its first appearance in 1995, metal-organic framework materials (MOFs) have become a research hotspot in the field of environmental treatment due to its advantages of large specific surface area, high porosity and adjustable pore size, especially in the treatment of dye wastewater and heavy metal wastewater. With the deepening of research, as a kind of crystalline material with porous structure, MOFs have a wide application prospect in the field of air purification materials due to their strong adsorption function. This paper summarizes the types and synthesis methods of MOFs, and reviews the application research progress of MOFs in gas separation, gas storage and particulate matter purification. At present, MOFs still have some problems, such as poor stability, low recycling efficiency, high cost and weak functionalization, etc. In the end of this paper, some research suggestions are put forward to solve these problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-247

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li H, Eddaoudi M, Okeeffe M. et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature ,1999,402 (6759) 276-279.

DOI: 10.1038/46248

Google Scholar

[2] Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemcial Society Reviews. 2014,43 (16): 5815-5840.

DOI: 10.1039/c4cs00010b

Google Scholar

[3] Gandara F, Furukawa H, Lee S, et al. High methane storage capacity in aluminum metal-organic frameworks[J]. Journal of the American Chemical Society, 2014, 136 (14) 5271-5274.

DOI: 10.1021/ja501606h

Google Scholar

[4] Flaig R W, Popp T, Fracaroli A M, et al. The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions[J]. Journal of the American Chemical Society, 2017, 139(35): 12125-12128.

DOI: 10.1021/jacs.7b06382

Google Scholar

[5] Zhao X, Bu X, Nguyen E T, et al. Multivariable modular design of pore space partition[J]. Journal of the American Chemical Society, 2016, 138(46):15102-15105.

DOI: 10.1021/jacs.6b07901

Google Scholar

[6] Liang C, Zhang X, Feng P, et al. ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics[J]. Chemical Engineering Journal, 2018,344: 95-104.

DOI: 10.1016/j.cej.2018.03.064

Google Scholar

[7] Medishetty R, Nalla V, Nemec L, et al. A new class of lasing materials: intrinsic stimulated emission from nonlinear optically active metal-organic frameworks[J]. Advanced Materials, 2017, 29(17):1605637.1-1605637.7.

DOI: 10.1002/adma.201605637

Google Scholar

[8] Zhu M, Hao Z, Song M, et al. A new type of double-chain based 3D lanthanide(III) metal-organic framework demonstrating proton conduction and tunable emission[J]. Chemical communications-royal society of chemistry,2014,50:19.

DOI: 10.1039/c3cc48764d

Google Scholar

[9] Nguyen C V, Liao Y T, Kang T C, et al. A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion[J]. Green Chemistry, 2016,18:5957-5961.

DOI: 10.1039/c6gc02118b

Google Scholar

[10] Fan S, Dong W, Huang X, et al. In situ-induced synthesis of magnetic Cu-CuFe2O4@HKUST-1 heterostructures with enhanced catalytic performance for selective aerobic benzylic C-H oxidation[J]. Acs Catalysis, 2016, 7(1):243-249.

DOI: 10.1021/acscatal.6b02614.s001

Google Scholar

[11] Chen Q, Li S, Liu Y, et al. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase[J]. Sensors and Actuators B: Chemical,2019,305:127511.

DOI: 10.1016/j.snb.2019.127511

Google Scholar

[12] Li S Q, Liu, H X, Chai, Y M, et al. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes[J]. Trac Trends in Analytical Chemistry, 2018, 105 :391-403.

DOI: 10.1016/j.trac.2018.06.001

Google Scholar

[13] Chen Q, Zhang X, Li S, et al. MOF-derived Co3O4@Co-Fe oxide double-shelled nanocages as multi- functional specific peroxidase-like nanozyme catalysts for chemo/biosensing and dye degradation[J]. Chemical Engineering Journal, 2020, 395:125130.

DOI: 10.1016/j.cej.2020.125130

Google Scholar

[14] Zhuang Y X, Zhang X D, Chen Q M, et al. Co3O4/CuO hollow nanocage hybrids with high oxidase-like activit.

Google Scholar

[15] Rocca J D, Liu D, Lin W. Nanoscale metaleorganic frameworks for biomedical imaging and drug delivery[J]. Accounts of Chemical Research, 2011, 44(10):957-968.

DOI: 10.1021/ar200028a

Google Scholar

[16] Horcajada P, Gref R, Baati T, et al. Metal organic frameworks in biomedicine[J]. Chemical reviews, 2012, 112(2):1232-1268.

DOI: 10.1021/cr200256v

Google Scholar

[17] Li J, Wang L, Liu Y Q, et al. The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis[J]. Environmental Science and Pollution Research ,2020,27(16):19265–19284.

DOI: 10.1007/s11356-020-08241-1

Google Scholar

[18] Rosi N L. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622):1127-1129.

DOI: 10.1126/science.1083440

Google Scholar

[19] Murray L J, Dincă M L, Jeffrey R. Hydrogen storage in metal–organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1294-1314.

DOI: 10.1039/b802256a

Google Scholar

[20] Park K. S, Ni Z, Cote A, et al, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 103(27):10186–10191.

DOI: 10.1073/pnas.0602439103

Google Scholar

[21] Rankin R B, Liu J, Kulkarni, A D, et al. Adsorption and diffusion of light gases in ZIF-68 and ZIF-70: A Simulation Study[J]. The Journal of Physical Chemistry C, 2009, 113(39):16906-16914.

DOI: 10.1021/jp903735m

Google Scholar

[22] Gérard F, Christian S, Caroline M, et al. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction[J]. Angewandte Chemie International Edition, 2004, 43(46):6296–6301.

DOI: 10.1002/anie.200460592

Google Scholar

[23] Wang Y L, Qiu X Z, Li Y Y, et al. Synthesis of a Molecularly Imprinted Polymer on NH2-MIL-101(Cr) for Specific Recognition of Diclofenac Sodium[J]. Journal of Nanoscience and Nanotechnology, 2020,20(3):1807–1813.

DOI: 10.1166/jnn.2020.17352

Google Scholar

[24] Ma S, Zhou H C. A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity[J]. Journal of the American Chemical Society, 2006, 128(36):11734-11735.

DOI: 10.1021/ja063538z

Google Scholar

[25] Ma S, Sun D, Simmons J M, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J]. Journal of the American Chemical Society, 2008, 130(3):1012-1016.

DOI: 10.1021/ja0771639

Google Scholar

[26] Puchberger M, Kogler F R, Jupa M, et al. Can the Clusters Zr6O4(OH)4(OOCR)12 and [Zr6O4(OH)4(OOCR)12]2 Be Converted into Each Other? [J]. Berichte Der Deutschen Chemischen Gesellschaft,2006,16(16):3283-3293.

DOI: 10.1002/ejic.200600348

Google Scholar

[27] Cavka J H,Jakobsen S O, Olsbye U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability[J]. Journl of American Chemical Society,2008,130(42):13850-13851.

DOI: 10.1021/ja8057953

Google Scholar

[28] Tanaka D,Nakagawa K,Higuchi M, et al. Kinetic Gate‐Opening Process in a Flexible Porous Coordination Polymer[J]. Angewandte Chemie International Edition.2008, 47(21):3914-3918.

DOI: 10.1002/anie.200705822

Google Scholar

[29] Xiang H, Carter J H, Tang C C, et al. C2H4 and C2H6 adsorption-induced structural variation of pillared-layer CPL-2 MOF: A combined experimental and Monte Carlo simulation study[J]. Chemical Engineering Science, 2020, 218:115566.

DOI: 10.1016/j.ces.2020.115566

Google Scholar

[30] Li J J, Wang C C, Guo, J, et al. Two zigzag chain-like lanthanide(III) coordination polymers based on the rigid 1,3-adamantanedicarboxylic acid ligand: Crystal structure, luminescence and magnetic properties[J]. Polyhedron, 2017,126:17–22.

DOI: 10.1016/j.poly.2017.01.010

Google Scholar

[31] Eddaoudi M,Kim J,Rosi N,et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554):469-472.

DOI: 10.1126/science.1067208

Google Scholar

[32] Vakili R, Xu S, Al-Janabi N, et al. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption[J]. Microporous and Mesoporous Materials, 2018,260:45-53.

DOI: 10.1016/j.micromeso.2017.10.028

Google Scholar

[33] Cho H Y, Yang D A, Kim J, et al. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today, 2012, 185(1):35-40.

DOI: 10.1016/j.cattod.2011.08.019

Google Scholar

[34] Užarević K, Wang T C, Moon S Y, et al. Mechanochemical and Solvent-free Assembly of Zirconium-Based Metal-organic Frameworks[J]. Chemical Communications,2016, 52(10):2133-2136.

DOI: 10.1039/c5cc08972g

Google Scholar

[35] Pichon A,Lazuen-Garay A,James S L. Solvent-free synthesis of a microporous metal–organic framework[J]. Cryst Eng Comm,2006, 8(3):211–214.

DOI: 10.1039/b513750k

Google Scholar

[36] Seoane B, Zamaro J M, Tellez C, et al. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20)[J]. CrystEngComm, 2012, 14(9):3103-3107.

DOI: 10.1039/c2ce06382d

Google Scholar

[37] Jin H B, Suslick K S. Applications of ultrasound to the synthesis of nanostructured materials[J]. Advanced Materials, 2010, 22(10):1039-1059.

DOI: 10.1002/adma.200904093

Google Scholar

[38] Li Y S, Bux H, Feldhof F A, et al. Controllable Synthesis of Metal-Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes[J]. Advanced Materials, 2010, 22(30):3322-3326.

DOI: 10.1002/adma.201000857

Google Scholar

[39] Mehta J P, Tian T, Zeng Z, et al. Sol–Gel Synthesis of Robust Metal–Organic Frameworks for Nanoparticle Encapsulation[J]. Advanced Functional Materials, (2018).

DOI: 10.1002/adfm.201705588

Google Scholar

[40] Chen Y, Jiang J. A bio-metal-organic framework for highly selective CO2 capture: A molecular simulation study [J]. Chemsuschem, 2010, 3(8):982-988.

DOI: 10.1002/cssc.201000080

Google Scholar

[41] Calero S, Gómez-Álvarez P. Insights into the Adsorption of Water and Small Alcohols on the Open-Metal Sites of Cu–BTC via Molecular Simulation[J]. Journal of Physical Chemistry C, 2015, 119(1):467–472.

DOI: 10.1021/jp510429w

Google Scholar

[42] Yang Q, Zhong C. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks[J]. Journal of Physical Chemistry B, 2006, 110(36):17776-17783.

DOI: 10.1021/jp062723w

Google Scholar

[43] Keskin S. Sholl D S. Screening Metal-Organic Framework Materials for Membrane-based Methane/Carbon Dioxide Separations[J]. Journal of Physical Chemistry C, 2007,111(38), 14055–14059. l.

DOI: 10.1021/jp075290l

Google Scholar

[44] Rodrigues M A, Souza R J,Souza C E, et al. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation[J]. Separation and Purification Technology, Separation & Purification Technology, 2018,192:491-500.

DOI: 10.1016/j.seppur.2017.10.024

Google Scholar

[45] Tchalala M R, Bhatt P M, Chappanda K N, et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air[J]. Nature Communications, 2019,10(1):1328.

DOI: 10.1038/s41467-019-09157-2

Google Scholar

[46] Li Z, Liao F, Jiang F, et al. Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: A molecular simulation study[J]. Fluid Phase Equilibria, 2016,427:259–267.

DOI: 10.1016/j.fluid.2016.07.020

Google Scholar

[47] Blake A J, Lewis W, et al. Modifying Cage Structures in Metal–Organic Polyhedral Frameworks for H2 Storage[J]. Chemistry, 2011,17(40), 11162–11170.

DOI: 10.1002/chem.201101341

Google Scholar

[48] Li Y W, Yang R T. Significantly Enhanced Hydrogen Storage in Metal−Organic Frameworks via Spillover[J]. Journal of the American Chemical Society, 2006,128(3): 726–727.

DOI: 10.1021/ja056831s

Google Scholar

[49] Li B, Wen H M, Wang H, et al. A Porous Metal-Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity[J]. Journal of the American Chemical Society, 2014, 136(17):6207-6210.

DOI: 10.1021/ja501810r

Google Scholar

[50] Mason J A, Oktawiec J, Taylor M K, et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management[J]. Nature, 2015,527:357-361.

DOI: 10.1038/nature15732

Google Scholar

[51] Guo J, Hanif A, Shang J, et al. PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5capture[J]. Chemical Engineering Journal, 2020,405: 126584.

DOI: 10.1016/j.cej.2020.126584

Google Scholar

[52] MA S, ZHANG M, NIE J, et al. Design of double-component metal–organic framework air filters with PM2.5 capture, gas adsorption and antibacterial capacities[J]. Carbohydrate Polymers, 2018, 203:415-422.

DOI: 10.1016/j.carbpol.2018.09.039

Google Scholar

[53] Wang Z, Zhang Y, Ma Xi Y, et al. Polymer/MOF-derived multilayer fibrous membranes for moisture-wicking and efficient capturing both fine and ultrafine airborne particles[J]. Separation and Purification Technology, 2020,235(C):116183-11.

DOI: 10.1016/j.seppur.2019.116183

Google Scholar

[54] Hu Min, Yin L, Nicholas L, et al. Zeolitic-imidazolate-framework filled hierarchical porous nanofiber membrane for air cleaning[J]. Journal of Membrane Science, 2020, 594:117467-117467.

DOI: 10.1016/j.memsci.2019.117467

Google Scholar

[55] Chen Y, Zhang S, Cao S, et al. Roll-to-Roll Production of Metal-Organic Framework Coatings for Particulate Matter Removal[J]. Advanced Materials, 2017,29(15): 1606221.

DOI: 10.1002/adma.201606221

Google Scholar