[1]
Verma, S., Dhanak, M., & Frankenfield, J. (2020). Visualizing the effectiveness of face masks in obstructing respiratory jets. Physics of Fluids, 32(6).
DOI: 10.1063/5.0016018
Google Scholar
[2]
Fadare, O. O., & Okoffo, E. D. (2020). Covid-19 face masks: A potential source of microplastic fibers in the environment. Science of the Total Environment, 737.
DOI: 10.1016/j.scitotenv.2020.140279
Google Scholar
[3]
Tahri, N., Bahafid, W., Sayel, H., & El Ghachtouli, N. (2013). Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. In Biodegradation - Life of Science. InTech.
DOI: 10.5772/56194
Google Scholar
[4]
Polman, E. M. N., Gruter, G. J. M., Parsons, J. R., & Tietema, A. (2021). Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. In Science of the Total Environment (Vol. 753, p.141953). Elsevier B.V.
DOI: 10.1016/j.scitotenv.2020.141953
Google Scholar
[5]
Harapan, H., Itoh, N., Yufika, A., Winardi, W., Keam, S., Te, H., Megawati, D., Hayati, Z., Wagner, A. L., & Mudatsir, M. (2020). Coronavirus disease 2019 (COVID-19): A literature review. In Journal of Infection and Public Health (Vol. 13, Issue 5, p.667–673). Elsevier Ltd.
DOI: 10.1016/j.jiph.2020.03.019
Google Scholar
[6]
Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, 100052.
DOI: 10.1016/j.cscee.2020.100052
Google Scholar
[7]
Mitze, T., Kosfeld, R., Rode, J., & Wälde, K. (2006). Face Masks Considerably Reduce Covid-19 Cases in Germany. IZA Discussion Paper, 13319.
DOI: 10.1101/2020.06.21.20128181
Google Scholar
[8]
Han, E. S., & goleman, daniel; boyatzis, Richard; Mckee, A. (2019). Illustrations of Face Mask. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Google Scholar
[9]
Grot, S. (2009). ( 12 ) United States Patent Date of Patent : System and Method for Programming a Weighing Scale Usinga Key Signal To Enter a Programming Mode, 1(12), 14.
Google Scholar
[10]
Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., & Uppara, P. V. (2008). Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology, 7(1), 9–22.
DOI: 10.2174/1874829500902010068
Google Scholar
[11]
Chand Malav, L., Yadav, K. K., Gupta, N., Kumar, S., Sharma, G. K., Krishnan, S., Rezania, S., Kamyab, H., Pham, Q. B., Yadav, S., Bhattacharyya, S., Yadav, V. K., & Bach, Q. V. (2020). A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. Journal of Cleaner Production, 277, 123227.
DOI: 10.1016/j.jclepro.2020.123227
Google Scholar
[12]
Vanapalli, K. R., Sharma, H. B., Ranjan, V. P., Samal, B., Bhattacharya, J., Dubey, B. K., & Goel, S. (2021). Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Science of the Total Environment, 750, 141514.
DOI: 10.1016/j.scitotenv.2020.141514
Google Scholar
[13]
Arkatkar, A., Arutchelvi, J., Bhaduri, S., Uppara, P. V., & Doble, M. (2009). Degradation of unpretreated and thermally pretreated polypropylene by soil consortia.
DOI: 10.1016/j.ibiod.2008.06.005
Google Scholar
[14]
Potrykus, M., Redko, V., Głowacka, K., Cieślak, A. P.-, Szarlej, P., Janik, H., & Wolska, L. (2020). Polypropylene structure alterations after 5 years of natural degradation in a waste landfill. Science of The Total Environment, 143649.
DOI: 10.1016/j.scitotenv.2020.143649
Google Scholar
[15]
Dussud, C., Hudec, C., George, M., Fabre, P., Higgs, P., Bruzaud, S., Delort, A. M., Eyheraguibel, B., Meistertzheim, A. L., Jacquin, J., Cheng, J., Callac, N., Odobel, C., Rabouille, S., & Ghiglione, J. F. (2018). Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Frontiers in Microbiology, 9(JUL), 1–13.
DOI: 10.3389/fmicb.2018.01571
Google Scholar
[16]
Tribedi, P., & Sil, A. K. (2013). Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environmental Science and Pollution Research, 20(6), 4146–4153.
DOI: 10.1007/s11356-012-1378-y
Google Scholar
[17]
Harrison, J. P., Schratzberger, M., Sapp, M., & Osborn, A. M. (2014). Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiology, 14(1), 1–15.
DOI: 10.1186/s12866-014-0232-4
Google Scholar
[18]
Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms. Journal of Agricultural Chemistry and Environment, 05(01), 23–34.
DOI: 10.4236/jacen.2016.51003
Google Scholar
[19]
Stack, L. B. (2011). Soil and Plant Nutrition: A Gardener's Perspective - Cooperative Extension: Garden & Yard - University of Maine Cooperative Extension.
Google Scholar
[20]
Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms. Journal of Agricultural Chemistry and Environment, 05(01), 23–34.
DOI: 10.4236/jacen.2016.51003
Google Scholar