Deep-Drawing of Commercially-Pure Niobium Sheet

Article Preview

Abstract:

Pure Niobium is a material of interest for high-energy-physics applications including superconducting accelerators. Cold-rolled sheets of Nb exhibit significant plastic anisotropy. Here we report on the mechanical and forming properties of 99.95% pure, 1.02 mm thin, cold-rolled sheet. Uniaxial tension, biaxial tension and disc compression experiments are performed, the first two at multiple angles to the rolling direction of the sheet. The material is very ductile (uniform elongation ~30%), and exhibits significant plastic anisotropy (e.g., the R-values range from 1.2 in 45o to 2.5 in 90o). The results are used to calibrate the Yld2000-2D anisotropic yield function, with an exponent of 6 as Nb is BCC. They are also used to extract the hardening curve beyond the limit load in uniaxial tension. Deep-drawing experiments are performed using a die of 27.6 mm dia. and a punch of 25.4 mm dia. Blanks of various diameters are used. The successfully drawn cups exhibit significant earing. The experiments are simulated using Abaqus/Standard and shell elements. It is shown that a properly calibrated material model enables the numerical simulations to match the experiments.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Tardif N, Kyriakides S (2012) Determination of anisotropy and material hardening for aluminum sheet metal. In: International Journal of Solids and Structures. Pergamon, p.3496–3506.

DOI: 10.1016/j.ijsolstr.2012.01.011

Google Scholar

[2] Tian H, Brownell B, Baral M, Korkolis YP (2017) Earing in cup-drawing of anisotropic Al-6022-T4 sheets. Int J Mater Form 10:329–343. https://doi.org/10.1007/s12289-016-1282-y.

DOI: 10.1007/s12289-016-1282-y

Google Scholar

[3] Ha J, Coppieters S, Korkolis YP (2020) On the expansion of a circular hole in an orthotropic elastoplastic thin sheet. Int J Mech Sci accepted:.

DOI: 10.1016/j.ijmecsci.2020.105706

Google Scholar

[4] Ha J, Fones J, Kinsey BL, Korkolis YP (2020) Plasticity and formability of annealed, commercially-pure aluminum: Experiments and modeling. Materials (Basel) 13:. https://doi.org/10.3390/ma13194285.

DOI: 10.3390/ma13194285

Google Scholar

[5] Dick CP, Korkolis YP (2015) Anisotropy of thin-walled tubes by a new method of combined tension and shear loading. Int J Plast 71:. https://doi.org/10.1016/j.ijplas.2015.04.006.

DOI: 10.1016/j.ijplas.2015.04.006

Google Scholar

[6] Baral M, Ha J, Korkolis YP (2019) Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy. Int J Fract. https://doi.org/https://doi.org/10.1007/s10704-019-00345-1.

DOI: 10.1007/s10704-019-00345-1

Google Scholar

[7] Choi Y, Ha J, Lee M-G, Korkolis YP (2021) Effect of plastic anisotropy and Portevin-Le Chatelier bands on hole-expansion in AA7075 sheets in-T6 and-W tempers. J Mater Process Technol 296:117211.

DOI: 10.1016/j.jmatprotec.2021.117211

Google Scholar

[8] Zamiri A, Pourboghrat F (2007) Characterization and development of an evolutionary yield function for the superconducting niobium sheet. Int J Solids Struct 44:8627–8647. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2007.06.025.

DOI: 10.1016/j.ijsolstr.2007.06.025

Google Scholar

[9] Lange K (1985) Handbook of metal forming. McGraw-Hill.

Google Scholar

[10] Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22:174–193. https://doi.org/10.1016/j.ijplas.2005.03.013.

DOI: 10.1016/j.ijplas.2005.03.013

Google Scholar

[11] Moreira LP, Ferron G, Ferran G (2000) Experimental and numerical analysis of the cup drawing test for orthotropic metal sheets. J Mater Process Technol 108:78–86. https://doi.org/https://doi.org/10.1016/S0924-0136(00)00660-9.

DOI: 10.1016/s0924-0136(00)00660-9

Google Scholar

[12] Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Chu E (2003) Plane stress yield function for aluminum alloy sheets—part 1: theory. Int J Plast 19:1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[13] Kim M, Chen K, Carriere P, Matavalam N, Penney J, Kutsaev S, Korkolis YP Mechanical Behavior and Forming of Commercially-pure Niobium Sheet. (submitted).

DOI: 10.1016/j.ijsolstr.2022.111770

Google Scholar

[14] Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheets - Part 1: Theory. Int J Plast 19:1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[15] Logan RW, Hosford WF (1980) Upper-bound anisotropic yield locus calculations assuming {111}-pencil glide. Int J Mech Sci 22:419–430. https://doi.org/10.1016/0020-7403(80)90011-9.

DOI: 10.1016/0020-7403(80)90011-9

Google Scholar

[16] Chen K, Scales M, Kyriakides S, Corona E (2016) Effects of anisotropy on material hardening and burst in the bulge test. Int J Solids Struct 82:70–84. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2015.12.012.

DOI: 10.1016/j.ijsolstr.2015.12.012

Google Scholar

[17] Ha J, Baral M, Korkolis YP (2018) Plastic anisotropy and ductile fracture of bake-hardened AA6013 aluminum sheet. Int J Solids Struct 155:123–139. https://doi.org/10.1016/J.IJSOLSTR.2018.07.015.

DOI: 10.1016/j.ijsolstr.2018.07.015

Google Scholar

[18] Ha J, Baral M, Korkolis YP (2019) Ductile fracture of an aluminum sheet under proportional loading. J Mech Phys Solids 132:. https://doi.org/10.1016/j.jmps.2019.103685.

DOI: 10.1016/j.jmps.2019.103685

Google Scholar

[19] Ha J, Korkolis YP (2021) Hole-Expansion: Sensitivity of Failure Prediction on Plastic Anisotropy Modeling. J Manuf Mater Process 5:28. https://doi.org/10.3390/jmmp5020028.

DOI: 10.3390/jmmp5020028

Google Scholar

[20] Cullen GW, Korkolis YP (2013) Ductility of 304 stainless steel under pulsed uniaxial loading. Int J Solids Struct 50:. https://doi.org/10.1016/j.ijsolstr.2013.01.020.

DOI: 10.1016/j.ijsolstr.2013.01.020

Google Scholar

[21] Knysh P, Korkolis YP (2017) Identification of the post-necking hardening response of rate- and temperature-dependent metals. Int J Solids Struct 115–116:. https://doi.org/10.1016/j.ijsolstr. 2017.03.012.

DOI: 10.1016/j.ijsolstr.2017.03.012

Google Scholar

[22] Roy BK, Korkolis YP, Arai Y, Araki W, Iijima T, Kouyama J (2022) Plastic deformation of AA6061-T6 at elevated temperatures: Experiments and modeling. Int J Mech Sci 216:106943. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2021.106943.

DOI: 10.1016/j.ijmecsci.2021.106943

Google Scholar

[23] Peroni L, Scapin M (2018) Experimental analysis and modelling of the strain-rate sensitivity of sheet niobium. In: EPJ Web of Conferences. EDP Sciences, p.1014.

DOI: 10.1051/epjconf/201818301014

Google Scholar