[1]
Tardif N, Kyriakides S (2012) Determination of anisotropy and material hardening for aluminum sheet metal. In: International Journal of Solids and Structures. Pergamon, p.3496–3506.
DOI: 10.1016/j.ijsolstr.2012.01.011
Google Scholar
[2]
Tian H, Brownell B, Baral M, Korkolis YP (2017) Earing in cup-drawing of anisotropic Al-6022-T4 sheets. Int J Mater Form 10:329–343. https://doi.org/10.1007/s12289-016-1282-y.
DOI: 10.1007/s12289-016-1282-y
Google Scholar
[3]
Ha J, Coppieters S, Korkolis YP (2020) On the expansion of a circular hole in an orthotropic elastoplastic thin sheet. Int J Mech Sci accepted:.
DOI: 10.1016/j.ijmecsci.2020.105706
Google Scholar
[4]
Ha J, Fones J, Kinsey BL, Korkolis YP (2020) Plasticity and formability of annealed, commercially-pure aluminum: Experiments and modeling. Materials (Basel) 13:. https://doi.org/10.3390/ma13194285.
DOI: 10.3390/ma13194285
Google Scholar
[5]
Dick CP, Korkolis YP (2015) Anisotropy of thin-walled tubes by a new method of combined tension and shear loading. Int J Plast 71:. https://doi.org/10.1016/j.ijplas.2015.04.006.
DOI: 10.1016/j.ijplas.2015.04.006
Google Scholar
[6]
Baral M, Ha J, Korkolis YP (2019) Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy. Int J Fract. https://doi.org/https://doi.org/10.1007/s10704-019-00345-1.
DOI: 10.1007/s10704-019-00345-1
Google Scholar
[7]
Choi Y, Ha J, Lee M-G, Korkolis YP (2021) Effect of plastic anisotropy and Portevin-Le Chatelier bands on hole-expansion in AA7075 sheets in-T6 and-W tempers. J Mater Process Technol 296:117211.
DOI: 10.1016/j.jmatprotec.2021.117211
Google Scholar
[8]
Zamiri A, Pourboghrat F (2007) Characterization and development of an evolutionary yield function for the superconducting niobium sheet. Int J Solids Struct 44:8627–8647. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2007.06.025.
DOI: 10.1016/j.ijsolstr.2007.06.025
Google Scholar
[9]
Lange K (1985) Handbook of metal forming. McGraw-Hill.
Google Scholar
[10]
Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22:174–193. https://doi.org/10.1016/j.ijplas.2005.03.013.
DOI: 10.1016/j.ijplas.2005.03.013
Google Scholar
[11]
Moreira LP, Ferron G, Ferran G (2000) Experimental and numerical analysis of the cup drawing test for orthotropic metal sheets. J Mater Process Technol 108:78–86. https://doi.org/https://doi.org/10.1016/S0924-0136(00)00660-9.
DOI: 10.1016/s0924-0136(00)00660-9
Google Scholar
[12]
Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Chu E (2003) Plane stress yield function for aluminum alloy sheets—part 1: theory. Int J Plast 19:1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0.
DOI: 10.1016/s0749-6419(02)00019-0
Google Scholar
[13]
Kim M, Chen K, Carriere P, Matavalam N, Penney J, Kutsaev S, Korkolis YP Mechanical Behavior and Forming of Commercially-pure Niobium Sheet. (submitted).
DOI: 10.1016/j.ijsolstr.2022.111770
Google Scholar
[14]
Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheets - Part 1: Theory. Int J Plast 19:1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0.
DOI: 10.1016/s0749-6419(02)00019-0
Google Scholar
[15]
Logan RW, Hosford WF (1980) Upper-bound anisotropic yield locus calculations assuming {111}-pencil glide. Int J Mech Sci 22:419–430. https://doi.org/10.1016/0020-7403(80)90011-9.
DOI: 10.1016/0020-7403(80)90011-9
Google Scholar
[16]
Chen K, Scales M, Kyriakides S, Corona E (2016) Effects of anisotropy on material hardening and burst in the bulge test. Int J Solids Struct 82:70–84. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2015.12.012.
DOI: 10.1016/j.ijsolstr.2015.12.012
Google Scholar
[17]
Ha J, Baral M, Korkolis YP (2018) Plastic anisotropy and ductile fracture of bake-hardened AA6013 aluminum sheet. Int J Solids Struct 155:123–139. https://doi.org/10.1016/J.IJSOLSTR.2018.07.015.
DOI: 10.1016/j.ijsolstr.2018.07.015
Google Scholar
[18]
Ha J, Baral M, Korkolis YP (2019) Ductile fracture of an aluminum sheet under proportional loading. J Mech Phys Solids 132:. https://doi.org/10.1016/j.jmps.2019.103685.
DOI: 10.1016/j.jmps.2019.103685
Google Scholar
[19]
Ha J, Korkolis YP (2021) Hole-Expansion: Sensitivity of Failure Prediction on Plastic Anisotropy Modeling. J Manuf Mater Process 5:28. https://doi.org/10.3390/jmmp5020028.
DOI: 10.3390/jmmp5020028
Google Scholar
[20]
Cullen GW, Korkolis YP (2013) Ductility of 304 stainless steel under pulsed uniaxial loading. Int J Solids Struct 50:. https://doi.org/10.1016/j.ijsolstr.2013.01.020.
DOI: 10.1016/j.ijsolstr.2013.01.020
Google Scholar
[21]
Knysh P, Korkolis YP (2017) Identification of the post-necking hardening response of rate- and temperature-dependent metals. Int J Solids Struct 115–116:. https://doi.org/10.1016/j.ijsolstr. 2017.03.012.
DOI: 10.1016/j.ijsolstr.2017.03.012
Google Scholar
[22]
Roy BK, Korkolis YP, Arai Y, Araki W, Iijima T, Kouyama J (2022) Plastic deformation of AA6061-T6 at elevated temperatures: Experiments and modeling. Int J Mech Sci 216:106943. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2021.106943.
DOI: 10.1016/j.ijmecsci.2021.106943
Google Scholar
[23]
Peroni L, Scapin M (2018) Experimental analysis and modelling of the strain-rate sensitivity of sheet niobium. In: EPJ Web of Conferences. EDP Sciences, p.1014.
DOI: 10.1051/epjconf/201818301014
Google Scholar