[1]
F. Ostermann, Anwendungstechnologie Aluminium, Berlin, Heidelberg: Springer Berlin Heidelberg, (2014).
Google Scholar
[2]
H. Ribes, Aluminum Applications in Lightweight Design for Small Commercial Vehicles and Station Wagons, ATZprod worldwide, 2019, no. 6:42–45.
DOI: 10.1007/s38312-019-0004-0
Google Scholar
[3]
P.F. Bariani, S. Bruschi, A. Ghiotti, and F. Michieletto, Hot stamping of AA5083 aluminium alloy sheets, CIRP Annals, 62 (2013), 251–254.
DOI: 10.1016/j.cirp.2013.03.050
Google Scholar
[4]
R. Neugebauer, T. Altan, M. Geiger, M. Kleiner, and A. Sterzing, Sheet metal forming at elevated temperatures, CIRP Annals, 55 (2006), 793–816.
DOI: 10.1016/j.cirp.2006.10.008
Google Scholar
[5]
K. Siegert, Blechumformung, Berlin, Heidelberg: Springer Berlin Heidelberg, (2015).
Google Scholar
[6]
T.G. Langdon, The mechanical properties of superplastic materials, Metallurgical Transactions A, 13A (1982), 689–701.
Google Scholar
[7]
F. Klocke, and W. König, Fertigungsverfahren 4: Umformen, SpringerLink Bücher, Berlin, Heidelberg: Springer Berlin Heidelberg, (2006).
Google Scholar
[8]
M. Kawasaki, and T.G. Langdon, Principles of superplasticity in ultrafine-grained materials, Journal of Materials Science, 42 (2007), 1782–1796.
DOI: 10.1007/s10853-006-0954-2
Google Scholar
[9]
M.F.-X. Wagner, N. Nostitz, S. Frint, P. Frint, and J. Ihlemann, Plastic flow during equal-channel angular pressing with arbitrary tool angles, International Journal of Plasticity, 134 (2020).
DOI: 10.1016/j.ijplas.2020.102755
Google Scholar
[10]
J. Suh, J. Victoria-Hernandez, D. Letzig, R. Golle, S. Yi, J. Bohlen, and W. Volk, Improvement of Ductility at Room Temperature of Mg-3Al-1Zn Alloy Sheets Processed by Equal Channel Angular Pressing, Procedia Engineering, 81 (2014), 1517–1522.
DOI: 10.1016/j.proeng.2014.10.183
Google Scholar
[11]
M. Gruber, C. Illgen, P. Frint, M.F.-X. Wagner, and W. Volk, Numerical and Experimental Study on ECAP-Processing Parameters for Efficient Grain Refinement of AA5083 Sheet Metal, Key Engineering Materials, 794 (2019), 315–323.
DOI: 10.4028/www.scientific.net/kem.794.315
Google Scholar
[12]
P. Frint, M.F.-X. Wagner, S. Weber, S. Seipp, S. Frint, and T. Lampke, An experimental study on optimum lubrication for large-scale severe plastic deformation of aluminum-based alloys, Journal of Materials Processing Technology, 239 (2017), 222–229.
DOI: 10.1016/j.jmatprotec.2016.08.032
Google Scholar
[13]
M. Gruber, Y. Yang, C. Illgen, P. Frint, M.F.-X. Wagner, and W. Volk, Thermomechanical Analysis and Experimental Validation of ECAP for Aluminum Sheet Metal, Forming the Future, ed. G. Daehn et al., The Minerals, Metals & Materials Series, vol. 1, Cham: Springer International Publishing, 2021, 1775–1790.
DOI: 10.1007/978-3-030-75381-8_149
Google Scholar
[14]
Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scripta Materialia, 35 (1996), 143–146.
DOI: 10.1016/1359-6462(96)00107-8
Google Scholar
[15]
DIN EN ISO 12004-2, Metallische Werkstoffe – Bleche und Bänder - Bestimmung der Grenzformänderungskurve: Teil 2: Bestimmung von Grenzformänderungskurven im Labor, DIN Deutsches Institut für Normung e.V., 34 pp., (2008).
DOI: 10.31030/3212338
Google Scholar
[16]
C. Illgen, B. Bohne, M.F.-X. Wagner, M. Gruber, W. Volk, and P. Frint, Facing the Issues of Sheet Metal Equal‐Channel Angular Pressing: A Modified Approach Using Stacks to Produce Ultrafine‐Grained High Ductility AA5083 Sheets, Advanced Engineering Materials, 1 (2021), 2100244.
DOI: 10.1002/adem.202100244
Google Scholar
[17]
K.W. Gerhardt, Untersuchungen zur konduktiven Erwärmung für Warmzugversuche an Blechen, Dissertation, Shaker Verlag GmbH, (2015).
Google Scholar
[18]
W. Hotz, M. Merklein, A. Kuppert, H. Friebe, and M. Klein, Time Dependent FLC Determination Comparison of Different Algorithms to Detect the Onset of Unstable Necking before Fracture, Key Engineering Materials, 549 (2013), 397–404.
DOI: 10.4028/www.scientific.net/kem.549.397
Google Scholar
[19]
M.-A. Kulas, P.W. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelly, Deformation Mechanisms in Superplastic AA5083 Materials, Metallurgical and Materials Transactions A, 2005, 36A:1249–1261.
DOI: 10.1007/s11661-005-0217-x
Google Scholar
[20]
R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, Journal of Materials Research, 17 (2002), 5–8.
DOI: 10.1557/jmr.2002.0002
Google Scholar
[21]
T. Naka, G. Torikai, R. Hino, and F. Yoshida, The effects of temperature and forming speed on the forming limit doagram for type 5083 aluminum-magnesium alloy sheet, Journal of Materials Processing Technology, 113 (2001), 648–653.
DOI: 10.1016/s0924-0136(01)00650-1
Google Scholar
[22]
J.D. Bressan, L.P. Moreira, M.C. dos Santos Freitas, S. Bruschi, A. Ghiotti, and F. Michieletto, Modelling of Forming Limit Strains of AA5083 Aluminium Sheets at Room and High Temperatures, Advanced Materials Research, 1135 (2016), 202–217.
DOI: 10.4028/www.scientific.net/amr.1135.202
Google Scholar
[23]
S. Bruschi, A. Ghiotti, and F. Michieletto, Hot Tensile Behavior of Superplastic and Commercial AA5083 Sheets at High Temperature and Strain Rate, Key Engineering Materials, 554-557 (2013), 63–70.
DOI: 10.4028/www.scientific.net/kem.554-557.63
Google Scholar
[24]
M.-A. Kulas, P.W. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelly, Failure mechanisms in superplastic AA5083 materials, Metallurgical and Materials Transactions A, 37 (2006), 645–655.
DOI: 10.1007/s11661-006-0036-8
Google Scholar