Characterization of Yield Surface Evolution of AZ31 from Shear to Equibiaxial Tension

Article Preview

Abstract:

This research characterized the strain hardening behavior of AZ31 under different stress states from shear to balanced biaxial tension with a newly proposed yield function. Experiments are conducted for AZ31 magnesium alloy by in-plane shear specimens, dogbone specimens, notched specimens and bulging specimens to characterize the flow behavior under different stress states. The flow behaviors are characterized by a newly proposed yield function in a form of the three stress invariants. The proposed yield function is implemented into ABAQUS/Explicit to predict the plastic response of the alloy under different stress states. It is shown that the proposed yield function can precisely predict the distinct flow behaviors and reaction forces from shear to equibiaxial tension from the initial yielding to fracture.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] F. Barlat, J. Lian, Plastic behavior and stretchability of sheet metals. Part I: Yield function for orthotropic sheets under plane stress conditions, Int. J. Plast. 5 (1989) 51–66.

DOI: 10.1016/0749-6419(89)90019-3

Google Scholar

[2] F. Barlat, D.J. Lege, J.C. Brem, A six-component yield function for anisotropic materials, Int. J. Plast. 7 (1991) 693–712.

DOI: 10.1016/0749-6419(91)90052-z

Google Scholar

[3] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheet-part I: theory, Int. J. Plast. 19 (2003) 1297–1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[4] F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, Linear transformation-based anisotropic yield functions, Int. J. Plast. 21 (2005) 1009–1039.

DOI: 10.1016/j.ijplas.2004.06.004

Google Scholar

[5] Y. Lou, J.W. Yoon, Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion, Int. J. Plast. 101 (2018) 125–155.

DOI: 10.1016/j.ijplas.2017.10.012

Google Scholar

[6] Y. Lou, S. Zhang, J.W. Yoon, A reduced Yld2004 function for modeling of anisotropic plastic deformation of metals under triaxial loading, Int. J. Mech. Sci. 161-162 (2019) 105027.

DOI: 10.1016/j.ijmecsci.2019.105027

Google Scholar

[7] D. Banabic, T. Kuwabara, T. Balan, D.S. Comsa, D. Julean, Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mech. Sci. 45 (2003) 797–811.

DOI: 10.1016/s0020-7403(03)00139-5

Google Scholar

[8] D. Banabic, H. Aretz, D.S. Comsa, L. Paraianu, An improved analytical description of orthotropy in metallic sheets, Int. J. Plast. 21 (2005) 493–512.

DOI: 10.1016/j.ijplas.2004.04.003

Google Scholar

[9] H. Aretz, F. Barlat, New convex yield functions for orthotropic metal plasticity, Int. J. Non-Lin. Mech. 51 (2013) 97–111.

DOI: 10.1016/j.ijnonlinmec.2012.12.007

Google Scholar

[10] F. Yoshida, H. Hamasaki, T. Uemori, A user-friendly 3D yield function to describe anisotropy of steel sheets, Int. J. Plast. 45 (2013) 119-139.

DOI: 10.1016/j.ijplas.2013.01.010

Google Scholar

[11] O. Cazacu, New yield criteria for isotropic and textured metallic materials, Int. J. Solids Struct. 139 (2018) 200–210.

DOI: 10.1016/j.ijsolstr.2018.01.036

Google Scholar

[12] O. Cazacu, F. Barlat, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast. 20 (2004) 2027–(2045).

DOI: 10.1016/j.ijplas.2003.11.021

Google Scholar

[13] O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal close packed metals, Int. J. Plast. 22 (2006) 1171–1194.

DOI: 10.1016/j.ijplas.2005.06.001

Google Scholar

[14] Y. Lou, H. Huh, J.W. Yoon, Consideration of strength differential effect in sheet metals with symmetric yield functions, Int. J. Mech. Sci. 66 (2013) 214–223.

DOI: 10.1016/j.ijmecsci.2012.11.010

Google Scholar

[15] J.W. Yoon, Y. Lou, J. Yoon, M.V. Glazoff, Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast. 56 (2014) 184–202.

DOI: 10.1016/j.ijplas.2013.11.008

Google Scholar

[16] Q. Hu, X. Li, X. Han, H. Li, J. Chen, A normalized stress invariant-based yield criterion: modeling and validation, Int. J. Plast. 99 (2017) 248-273.

DOI: 10.1016/j.ijplas.2017.09.010

Google Scholar

[17] T.B. Stoughton, J.W. Yoon, Anisotropic hardening and non-associated flow in proportional loading of sheet metals, Int. J. Plast. 25 (2009) 1777–1817.

DOI: 10.1016/j.ijplas.2009.02.003

Google Scholar

[18] E.-H. Lee, H. Choi, T.B. Stoughton, J.W. Yoon, Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect, Int. J. Plast. 122 (2019) 73–88.

DOI: 10.1016/j.ijplas.2019.07.007

Google Scholar

[19] N. Park, T.B. Stoughton, J.W. Yoon, A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule, Int. J. Plast. 121 (2019) 76–100.

DOI: 10.1016/j.ijplas.2019.04.015

Google Scholar

[20] Q. Hu, J.W. Yoon, N. Manopulo, P. Hora, A coupled yield criterion for anisotropic hardening with analytical description under associated flow rule: Modeling and validation, Int. J. Plast. 136 (2021) 102882.

DOI: 10.1016/j.ijplas.2020.102882

Google Scholar

[21] Q. Hu, J.W. Yoon, Analytical description of an asymmetric yield function (Yoon2014) by considering anisotropic hardening under non-associated flow rule, Int. J. Plast. 140, (2021) 102978.

DOI: 10.1016/j.ijplas.2021.102978

Google Scholar

[22] Q. Hu, J.W. Yoon, T.B. Stoughton, Analytical determination of anisotropic parameters for Poly6 yield function, Int. J. Plast. 201 (2021) 106467.

DOI: 10.1016/j.ijmecsci.2021.106467

Google Scholar

[23] Z. Chen, Y. Wang, Y. Lou, User-friendly anisotropic hardening function with non-associated flow rule under the proportional loadings for BCC and FCC metals, Mech. Mat. (2022) doi.org/10.1016/j.mechmat.2021.104190.

DOI: 10.1016/j.mechmat.2021.104190

Google Scholar

[24] Y. Lou, S. Zhang, J.W. Yoon, Strength modeling of sheet metals from shear to plane strain tension, Int. J. Plast. 134 (2020) 102813.

DOI: 10.1016/j.ijplas.2020.102813

Google Scholar

[25] Y. Lou, H. Huh, Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation, J. Mater. Process. Technol. 213 (2013) 1284–1302.

DOI: 10.1016/j.jmatprotec.2013.03.001

Google Scholar

[26] C. Zhang, Y. Lou, S. Zhang, T. Clausmeyer, A.E. Tekkaya, Q. Chen, Q. Zhang, Large strain flow curve identification for sheet metals under complex stress states, Mech. Mat. 161 (2021) 103997.

DOI: 10.1016/j.mechmat.2021.103997

Google Scholar

[27] Y. Lou, C. Zhang, S. Zhang, J.W. Yoon, S. Zhang, A general yield function with differential hardening for strength modelling from shear to equibiaxial tension, under review.

Google Scholar

[28] Y. Lou, H. Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter, Int. J. Solids Struct. 50 (2013) 447–455.

DOI: 10.1016/j.ijsolstr.2012.10.007

Google Scholar

[29] Y. Lou, J.W. Yoon, H. Huh, Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, Int. J. Plast. 54, (2014) 56–80.

DOI: 10.1016/j.ijplas.2013.08.006

Google Scholar