[1]
F. Barlat, J. Lian, Plastic behavior and stretchability of sheet metals. Part I: Yield function for orthotropic sheets under plane stress conditions, Int. J. Plast. 5 (1989) 51–66.
DOI: 10.1016/0749-6419(89)90019-3
Google Scholar
[2]
F. Barlat, D.J. Lege, J.C. Brem, A six-component yield function for anisotropic materials, Int. J. Plast. 7 (1991) 693–712.
DOI: 10.1016/0749-6419(91)90052-z
Google Scholar
[3]
F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheet-part I: theory, Int. J. Plast. 19 (2003) 1297–1319.
DOI: 10.1016/s0749-6419(02)00019-0
Google Scholar
[4]
F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, Linear transformation-based anisotropic yield functions, Int. J. Plast. 21 (2005) 1009–1039.
DOI: 10.1016/j.ijplas.2004.06.004
Google Scholar
[5]
Y. Lou, J.W. Yoon, Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion, Int. J. Plast. 101 (2018) 125–155.
DOI: 10.1016/j.ijplas.2017.10.012
Google Scholar
[6]
Y. Lou, S. Zhang, J.W. Yoon, A reduced Yld2004 function for modeling of anisotropic plastic deformation of metals under triaxial loading, Int. J. Mech. Sci. 161-162 (2019) 105027.
DOI: 10.1016/j.ijmecsci.2019.105027
Google Scholar
[7]
D. Banabic, T. Kuwabara, T. Balan, D.S. Comsa, D. Julean, Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mech. Sci. 45 (2003) 797–811.
DOI: 10.1016/s0020-7403(03)00139-5
Google Scholar
[8]
D. Banabic, H. Aretz, D.S. Comsa, L. Paraianu, An improved analytical description of orthotropy in metallic sheets, Int. J. Plast. 21 (2005) 493–512.
DOI: 10.1016/j.ijplas.2004.04.003
Google Scholar
[9]
H. Aretz, F. Barlat, New convex yield functions for orthotropic metal plasticity, Int. J. Non-Lin. Mech. 51 (2013) 97–111.
DOI: 10.1016/j.ijnonlinmec.2012.12.007
Google Scholar
[10]
F. Yoshida, H. Hamasaki, T. Uemori, A user-friendly 3D yield function to describe anisotropy of steel sheets, Int. J. Plast. 45 (2013) 119-139.
DOI: 10.1016/j.ijplas.2013.01.010
Google Scholar
[11]
O. Cazacu, New yield criteria for isotropic and textured metallic materials, Int. J. Solids Struct. 139 (2018) 200–210.
DOI: 10.1016/j.ijsolstr.2018.01.036
Google Scholar
[12]
O. Cazacu, F. Barlat, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast. 20 (2004) 2027–(2045).
DOI: 10.1016/j.ijplas.2003.11.021
Google Scholar
[13]
O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal close packed metals, Int. J. Plast. 22 (2006) 1171–1194.
DOI: 10.1016/j.ijplas.2005.06.001
Google Scholar
[14]
Y. Lou, H. Huh, J.W. Yoon, Consideration of strength differential effect in sheet metals with symmetric yield functions, Int. J. Mech. Sci. 66 (2013) 214–223.
DOI: 10.1016/j.ijmecsci.2012.11.010
Google Scholar
[15]
J.W. Yoon, Y. Lou, J. Yoon, M.V. Glazoff, Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast. 56 (2014) 184–202.
DOI: 10.1016/j.ijplas.2013.11.008
Google Scholar
[16]
Q. Hu, X. Li, X. Han, H. Li, J. Chen, A normalized stress invariant-based yield criterion: modeling and validation, Int. J. Plast. 99 (2017) 248-273.
DOI: 10.1016/j.ijplas.2017.09.010
Google Scholar
[17]
T.B. Stoughton, J.W. Yoon, Anisotropic hardening and non-associated flow in proportional loading of sheet metals, Int. J. Plast. 25 (2009) 1777–1817.
DOI: 10.1016/j.ijplas.2009.02.003
Google Scholar
[18]
E.-H. Lee, H. Choi, T.B. Stoughton, J.W. Yoon, Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect, Int. J. Plast. 122 (2019) 73–88.
DOI: 10.1016/j.ijplas.2019.07.007
Google Scholar
[19]
N. Park, T.B. Stoughton, J.W. Yoon, A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule, Int. J. Plast. 121 (2019) 76–100.
DOI: 10.1016/j.ijplas.2019.04.015
Google Scholar
[20]
Q. Hu, J.W. Yoon, N. Manopulo, P. Hora, A coupled yield criterion for anisotropic hardening with analytical description under associated flow rule: Modeling and validation, Int. J. Plast. 136 (2021) 102882.
DOI: 10.1016/j.ijplas.2020.102882
Google Scholar
[21]
Q. Hu, J.W. Yoon, Analytical description of an asymmetric yield function (Yoon2014) by considering anisotropic hardening under non-associated flow rule, Int. J. Plast. 140, (2021) 102978.
DOI: 10.1016/j.ijplas.2021.102978
Google Scholar
[22]
Q. Hu, J.W. Yoon, T.B. Stoughton, Analytical determination of anisotropic parameters for Poly6 yield function, Int. J. Plast. 201 (2021) 106467.
DOI: 10.1016/j.ijmecsci.2021.106467
Google Scholar
[23]
Z. Chen, Y. Wang, Y. Lou, User-friendly anisotropic hardening function with non-associated flow rule under the proportional loadings for BCC and FCC metals, Mech. Mat. (2022) doi.org/10.1016/j.mechmat.2021.104190.
DOI: 10.1016/j.mechmat.2021.104190
Google Scholar
[24]
Y. Lou, S. Zhang, J.W. Yoon, Strength modeling of sheet metals from shear to plane strain tension, Int. J. Plast. 134 (2020) 102813.
DOI: 10.1016/j.ijplas.2020.102813
Google Scholar
[25]
Y. Lou, H. Huh, Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation, J. Mater. Process. Technol. 213 (2013) 1284–1302.
DOI: 10.1016/j.jmatprotec.2013.03.001
Google Scholar
[26]
C. Zhang, Y. Lou, S. Zhang, T. Clausmeyer, A.E. Tekkaya, Q. Chen, Q. Zhang, Large strain flow curve identification for sheet metals under complex stress states, Mech. Mat. 161 (2021) 103997.
DOI: 10.1016/j.mechmat.2021.103997
Google Scholar
[27]
Y. Lou, C. Zhang, S. Zhang, J.W. Yoon, S. Zhang, A general yield function with differential hardening for strength modelling from shear to equibiaxial tension, under review.
Google Scholar
[28]
Y. Lou, H. Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter, Int. J. Solids Struct. 50 (2013) 447–455.
DOI: 10.1016/j.ijsolstr.2012.10.007
Google Scholar
[29]
Y. Lou, J.W. Yoon, H. Huh, Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, Int. J. Plast. 54, (2014) 56–80.
DOI: 10.1016/j.ijplas.2013.08.006
Google Scholar