In Situ Wear Measurement of Hot Forging Dies Using Robot Aided Endoscopic Fringe Projection

Article Preview

Abstract:

According to the current state of the art, wear conditions of forging dies are assessed visually in the dismantled state, as there is no measuring procedure available for inline wear measurement of hot forging dies. This paper introduces a handling concept for automated loading and in-situ tool inspection for a hot forging process. Based on an industrial robot and quickchange systems, the process integration of hightemperature grippers and an endoscopic 3D-measurement sensor for the in-situ inspection of hot forging dies is carried out. By adapting the measuring method of fringe projection to an endoscopic design, the measuring system can be navigated into the difficult-to-access geometry of the die and take high-precision 3D-measurements inside. The ambient air heated by the forming process creates an inhomogeneous refractive index field around the measuring system and the hot die, so that the straight beam path required for optical measuring systems cannot be ensured. This can lead to strong deviations in the reconstructed point clouds and the functional geometries derived from them. By means of a compressed air actuator, the measuring system can be protected from the hot tool and dirt as well as the effect of inhomogeneous refractive index can be reduced. With this approach the in-situ wear measurement at highly stressed regions using the example of the mandrel radius and the flash radius will be demonstrated. These functional elements are of particular relevance, as the thermalstress is high and large material flow takes place. For the wear measurement, the functional elements of the tool are examined in detail by fitting geometrical features into the reconstructed point clouds and determining the deviations from a reference geometry. In addition, the measurement data is validated with the aid of a commercially available state-of-the-art measurement system.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Buchmayr, B., Damage, lifetime, and repair of forging dies,, BHM Berg- und Hüttenmännische Monatshefte 162, 88-93 (dec 2016).

DOI: 10.1007/s00501-016-0566-3

Google Scholar

[2] McKelvey, S. A. and Fatemi, A., Surface finish effect on fatigue behavior of forged steel,, International Journal of Fatigue 36, 130-145 (mar 2012).

DOI: 10.1016/j.ijfatigue.2011.08.008

Google Scholar

[3] Kumar, D. and Mondal, S., A review on modelling, design and optimization of forging process,, IOP Conference Series: Materials Science and Engineering 1126, 012001 (mar 2021).

DOI: 10.1088/1757-899x/1126/1/012001

Google Scholar

[4] Zhu, L. and Jia, M.-P., A new approach for the influence of residual stress on fatigue crack propagation,, Results in Physics 7, 2204-2212 (2017).

DOI: 10.1016/j.rinp.2017.06.039

Google Scholar

[5] Totten, G., Funatani, K., and Xie, L., [Handbook of Metallurgical Process Design], Materials Engineering, CRC Press (2004).

Google Scholar

[6] Hawryluk, M., Gronostajski, Z., Ziemba, J., Dworzak, Ł., Jabłoński, P., and Rychlik, M., Analysis of the influence of lubrication conditions on tool wear used in hot die forging processes,, Eksploatacja i Niezawodnosc - Maintenance and Reliability 20, 169-176 (mar 2018).

DOI: 10.17531/ein.2018.2.01

Google Scholar

[7] Abachi, S., Akkök, M., and Gökler, M. İ., Wear analysis of hot forging dies,, Tribology International 43, 467-473 (jan 2010).

DOI: 10.1016/j.triboint.2009.07.011

Google Scholar

[8] Emamverdian, A. A., Sun, Y., and Chunping, C., Deformation and wear in a h21 (3cr2w8v) steel die during hot forging: simulation, mechanical properties, and microstructural evolution,, Journal of Materials Research and Technology 15, 268-277 (nov 2021).

DOI: 10.1016/j.jmrt.2021.08.022

Google Scholar

[9] Stachowiak, G. W., ed., [Wear - Materials, Mechanisms and Practice], John Wiley & Sons Ltd (nov 2005).

Google Scholar

[10] Zwierzchowski, M., Factors affecting the wear resistance of forging tools,, Archives of Metallurgy and Materials 62, 1567-1576 (sep 2017).

DOI: 10.1515/amm-2017-0240

Google Scholar

[11] Deutsches Institut für Normung e. V., Din 50321 verschleiß-meßgrößen,, Standard DIN 50321, Deutsches Institut für Normung e. V. (1997).

DOI: 10.1007/978-3-322-82985-6

Google Scholar

[12] Czichos, H. and Habig, K.-H., [Tribologie-Handbuch], Springer Fachmedien Wiesbaden (2015). 1678 Achievements and Trends Material Forming[13] Brunotte, K. and Behrens, B.-A., [Beitrag zur Steigerung der Standmenge von Werkzeugen der Warmmassivumformung durch den Einsatz lokaler belastungsangepasster Verschleißschutzbehandlungen], TEWISS Verlag, Garbsen (2021).

Google Scholar

[14] Beermann, R., Quentin, L., Stein, G., Reithmeier, E., and Kästner, M., Full simulation model for laser triangulation measurement in an inhomogeneous refractive index field,, Optical Engineering 57, 1 (nov 2018).

DOI: 10.1117/1.oe.57.11.114107

Google Scholar

[15] Quentin, L., Reinke, C., Beermann, R., Kästner, M., and Reithmeier, E., Design, setup, and evaluation of a compensation system for the light deflection effect occurring when measuring wrought-hot objects using optical triangulation methods,, Metals 10(7) (2020).

DOI: 10.3390/met10070908

Google Scholar

[16] Schlobohm, J., Pösch, A., Kästner, M., and Reithmeier, E., On the development of a low-cost rigid borescopic fringe projection system,, in [Photonics, Devices, and Systems VI], SPIE (Jan. 2015).

DOI: 10.1117/12.2067310

Google Scholar

[17] Zhang, Z., A flexible new technique for camera calibration,, IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330-1334 (2000).

DOI: 10.1109/34.888718

Google Scholar

[18] Brown, D., Close-range camera calibration,, Photogramm. Eng. 37 (12 2002).

Google Scholar

[19] Middendorf, P., Hedrich, K., Kästner, M., and Reithmeier, E., Miniaturization of borescopic fringe projection systems for the inspection in confined spaces: a methodical analysis,, in.

DOI: 10.1117/12.2583148

Google Scholar

[20] Deutsches Institut für Normung e. V., DIN 26343-2 Optical 3-D measuring systems, Optical systems based on area scanning,, standard, Deutsches Institut für Normung e. V. (2012).

DOI: 10.1007/978-3-322-82985-6

Google Scholar

[21] International Organization for Standardization, ISO/IEC GUIDE 98-3:2008, Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995),, standard, International Organization for Standardization (2008).

Google Scholar

[22] Matthias, S., Schlobohm, J., Kästner, M., and Reithmeier, E., Fringe projection profilometry using rigid and flexible endoscopes,, tm - Technisches Messen 84 (01 2017).

DOI: 10.1515/teme-2016-0054

Google Scholar

[23] Chen, Y. and Medioni, G. G., Object modelling by registration of multiple range images,, Image Vis. Comput. 10, 145-155 (1992).

DOI: 10.1016/0262-8856(92)90066-c

Google Scholar

[24] Besl, P. and McKay, N. D., A method for registration of 3-d shapes,, IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239-256 (1992).

DOI: 10.1109/34.121791

Google Scholar

[25] Hinz, L., Kästner, M., and Reithmeier, E., Metal forming tool monitoring based on a 3d measuring endoscope using CAD assisted registration,, Sensors 19, 2084 (may 2019).

DOI: 10.3390/s19092084

Google Scholar

[26] Hinz, L., Metzner, S., Müller, P., Schulte, R., Besserer, H.-B., Wackenrohr, S., Sauer, C., Kästner, M., Hausotte, T., Hübner, S., Nürnberger, F., Schleich, B., Behrens, B.-A., Wartzack, S., Merklein, M., and Reithmeier, E., Fringe projection profilometry in production metrology: A multi-scale comparison in sheet-bulk metal forming,, Sensors 21(7) (2021). Key Engineering Materials Vol. 925 1679.

DOI: 10.3390/s21072389

Google Scholar