[1]
Buchmayr, B., Damage, lifetime, and repair of forging dies,, BHM Berg- und Hüttenmännische Monatshefte 162, 88-93 (dec 2016).
DOI: 10.1007/s00501-016-0566-3
Google Scholar
[2]
McKelvey, S. A. and Fatemi, A., Surface finish effect on fatigue behavior of forged steel,, International Journal of Fatigue 36, 130-145 (mar 2012).
DOI: 10.1016/j.ijfatigue.2011.08.008
Google Scholar
[3]
Kumar, D. and Mondal, S., A review on modelling, design and optimization of forging process,, IOP Conference Series: Materials Science and Engineering 1126, 012001 (mar 2021).
DOI: 10.1088/1757-899x/1126/1/012001
Google Scholar
[4]
Zhu, L. and Jia, M.-P., A new approach for the influence of residual stress on fatigue crack propagation,, Results in Physics 7, 2204-2212 (2017).
DOI: 10.1016/j.rinp.2017.06.039
Google Scholar
[5]
Totten, G., Funatani, K., and Xie, L., [Handbook of Metallurgical Process Design], Materials Engineering, CRC Press (2004).
Google Scholar
[6]
Hawryluk, M., Gronostajski, Z., Ziemba, J., Dworzak, Ł., Jabłoński, P., and Rychlik, M., Analysis of the influence of lubrication conditions on tool wear used in hot die forging processes,, Eksploatacja i Niezawodnosc - Maintenance and Reliability 20, 169-176 (mar 2018).
DOI: 10.17531/ein.2018.2.01
Google Scholar
[7]
Abachi, S., Akkök, M., and Gökler, M. İ., Wear analysis of hot forging dies,, Tribology International 43, 467-473 (jan 2010).
DOI: 10.1016/j.triboint.2009.07.011
Google Scholar
[8]
Emamverdian, A. A., Sun, Y., and Chunping, C., Deformation and wear in a h21 (3cr2w8v) steel die during hot forging: simulation, mechanical properties, and microstructural evolution,, Journal of Materials Research and Technology 15, 268-277 (nov 2021).
DOI: 10.1016/j.jmrt.2021.08.022
Google Scholar
[9]
Stachowiak, G. W., ed., [Wear - Materials, Mechanisms and Practice], John Wiley & Sons Ltd (nov 2005).
Google Scholar
[10]
Zwierzchowski, M., Factors affecting the wear resistance of forging tools,, Archives of Metallurgy and Materials 62, 1567-1576 (sep 2017).
DOI: 10.1515/amm-2017-0240
Google Scholar
[11]
Deutsches Institut für Normung e. V., Din 50321 verschleiß-meßgrößen,, Standard DIN 50321, Deutsches Institut für Normung e. V. (1997).
DOI: 10.1007/978-3-322-82985-6
Google Scholar
[12]
Czichos, H. and Habig, K.-H., [Tribologie-Handbuch], Springer Fachmedien Wiesbaden (2015). 1678 Achievements and Trends Material Forming[13] Brunotte, K. and Behrens, B.-A., [Beitrag zur Steigerung der Standmenge von Werkzeugen der Warmmassivumformung durch den Einsatz lokaler belastungsangepasster Verschleißschutzbehandlungen], TEWISS Verlag, Garbsen (2021).
Google Scholar
[14]
Beermann, R., Quentin, L., Stein, G., Reithmeier, E., and Kästner, M., Full simulation model for laser triangulation measurement in an inhomogeneous refractive index field,, Optical Engineering 57, 1 (nov 2018).
DOI: 10.1117/1.oe.57.11.114107
Google Scholar
[15]
Quentin, L., Reinke, C., Beermann, R., Kästner, M., and Reithmeier, E., Design, setup, and evaluation of a compensation system for the light deflection effect occurring when measuring wrought-hot objects using optical triangulation methods,, Metals 10(7) (2020).
DOI: 10.3390/met10070908
Google Scholar
[16]
Schlobohm, J., Pösch, A., Kästner, M., and Reithmeier, E., On the development of a low-cost rigid borescopic fringe projection system,, in [Photonics, Devices, and Systems VI], SPIE (Jan. 2015).
DOI: 10.1117/12.2067310
Google Scholar
[17]
Zhang, Z., A flexible new technique for camera calibration,, IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330-1334 (2000).
DOI: 10.1109/34.888718
Google Scholar
[18]
Brown, D., Close-range camera calibration,, Photogramm. Eng. 37 (12 2002).
Google Scholar
[19]
Middendorf, P., Hedrich, K., Kästner, M., and Reithmeier, E., Miniaturization of borescopic fringe projection systems for the inspection in confined spaces: a methodical analysis,, in.
DOI: 10.1117/12.2583148
Google Scholar
[20]
Deutsches Institut für Normung e. V., DIN 26343-2 Optical 3-D measuring systems, Optical systems based on area scanning,, standard, Deutsches Institut für Normung e. V. (2012).
DOI: 10.1007/978-3-322-82985-6
Google Scholar
[21]
International Organization for Standardization, ISO/IEC GUIDE 98-3:2008, Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995),, standard, International Organization for Standardization (2008).
Google Scholar
[22]
Matthias, S., Schlobohm, J., Kästner, M., and Reithmeier, E., Fringe projection profilometry using rigid and flexible endoscopes,, tm - Technisches Messen 84 (01 2017).
DOI: 10.1515/teme-2016-0054
Google Scholar
[23]
Chen, Y. and Medioni, G. G., Object modelling by registration of multiple range images,, Image Vis. Comput. 10, 145-155 (1992).
DOI: 10.1016/0262-8856(92)90066-c
Google Scholar
[24]
Besl, P. and McKay, N. D., A method for registration of 3-d shapes,, IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239-256 (1992).
DOI: 10.1109/34.121791
Google Scholar
[25]
Hinz, L., Kästner, M., and Reithmeier, E., Metal forming tool monitoring based on a 3d measuring endoscope using CAD assisted registration,, Sensors 19, 2084 (may 2019).
DOI: 10.3390/s19092084
Google Scholar
[26]
Hinz, L., Metzner, S., Müller, P., Schulte, R., Besserer, H.-B., Wackenrohr, S., Sauer, C., Kästner, M., Hausotte, T., Hübner, S., Nürnberger, F., Schleich, B., Behrens, B.-A., Wartzack, S., Merklein, M., and Reithmeier, E., Fringe projection profilometry in production metrology: A multi-scale comparison in sheet-bulk metal forming,, Sensors 21(7) (2021). Key Engineering Materials Vol. 925 1679.
DOI: 10.3390/s21072389
Google Scholar