[1]
D. Dörr, T. Joppich, F. Schirmaier, T. Mosthaf, L. Kärger, F. Henning, Sensitivity of material properties on wrinkling behavior and fiber reorientation of thermoplastic UD-Tape laminates during forming analyzed by Finite Element forming simulation, ECCM 17 - 17th European Conference on Composite Materials. Munich, Germany, (2016).
DOI: 10.1063/1.4963567
Google Scholar
[2]
P. Boisse, N. Hamila, E. Guzman-Maldonado, A. Madeo, G. Hivet, F. Dell´Isola, The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review, International Journal of Material Forming (10(4)), p.473–492, (2017).
DOI: 10.1007/s12289-016-1294-7
Google Scholar
[3]
J. Graef, B. Engel, Challenges of shear characterization in the bias extension test of fibre reinforced thermoplastics, SAMPE Europe Conference 2021 Baden/Zürich – Switzerland, (2021).
Google Scholar
[4]
J. Graef, B. Weiß, B. Engel, Measurement of fiber wrinkles and shear angles of Double Dome forming parts, ESAFORM 2021, 24th International Conference on Material Forming, Liège, (2021).
DOI: 10.25518/esaform21.3756
Google Scholar
[5]
B. Engel, J. Graef, Sensitivity Study of Material Input Data on FE Forming Results for Wrinkling and Shearing of Fiber Reinforced Thermoplastic Parts. In: Key Engineering Materials (Vol. 809), p.500–505, (2019).
DOI: 10.4028/www.scientific.net/kem.809.500
Google Scholar
[6]
B. Engel, J. Graef, Different material models for intra-ply shear and double-dome FE forming analysis, JEC COMPOSITES MAGAZINE (No 100), (2015).
Google Scholar
[7]
B. Engel, J. Graef, FE analysis of the influence of fiber orientation to shearing and wrinkling of fiber reinforced thermoplastic parts, Key Engineering Materials, Vol. 742, pp.732-739, (2017).
DOI: 10.4028/www.scientific.net/kem.742.732
Google Scholar
[8]
M. Nishi, T. Hirashima, T. Kurasiki, Textile composite reinforcement forming analysis considering out-of-plane bending stiffness and tension dependent in-plane shear behavior. In: 16th European Conference on Composite Materials- ECCM, Seville, Spain, (2014).
Google Scholar
[9]
B. Engel, J. Graef, Study of the bending stiffness of fibre-reinforced thermoplastics at forming temperature, JEC COMPOSITES MAGAZINE (102), p.38–41, (2016).
Google Scholar
[10]
DIN German institute for standardization, DIN 53362:2003-10. Testing of plastics films and textile fabrics (excluding nonwovens), coated or not coated fabrics - Determination of stiffness in bending - Method according to Cantilever, Berlin: Beuth Verlag, (2003).
Google Scholar
[11]
J. Cao, R. Akkerman, P. Boisse, J. Chen, et al., Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results, Compos Part A 39:1037–1053, (2008).
Google Scholar
[12]
W. Lee, J. Padvoiskis, J. Cao, E. de Luycker, P. Boisse, F. Morestin, Bias-extension of woven composie fabrics. In: Int J Mater Form (Suppl. 1), p.895–898, (2008).
DOI: 10.1007/s12289-008-0240-8
Google Scholar
[13]
G. Hivet, A. V. Duong, A contribution to the analysis of the intrinsic shear behavior of fabrics. In: Journal of Composite Materials 45 (6), p.695–716, (2011).
DOI: 10.1177/0021998310382315
Google Scholar
[14]
K. Friedrich, M. Hou, J. Krebs, Thermoforming of Continuous Fibre/Thermosplastic Composite Sheets. Editors: D. Bhattacharyya, Composite materials series, Elsevier, Volume 11, p.92–162, (1997).
DOI: 10.1016/s0927-0108(97)80006-9
Google Scholar