Numerical Evaluation of Press Forming Parameters and Mould Geometry in Wood Plastic Composite (WPC) Products

Article Preview

Abstract:

The purpose of this paper is to investigate factors associated with press-forming of Wood Plastic Composite (WPC) products. The WPC material is a novel, feasible, and economic way to use recycled thermoplastics. Due to the complexity of the fiber-polymer interaction, numerical simulation and thus prediction of WPC behavior in forming have been challenging. Up to now, press moulds have had to be empirically validated. In this paper, we explore the possibility of predicting material behavior using Autodesk Moldflow.

You have full access to the following eBook

Info:

Periodical:

Pages:

1268-1275

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] R. Steward, Wood fiber composites: Fierce competition drives advances in equipment, materials and processes, Plast. Eng. 63 (2007) 21-28.

DOI: 10.1002/j.1941-9635.2007.tb00050.x

Google Scholar

[2] D.B. Dittenber, H.V.S. Gangarao, Critical review of recent publications on use of natural composites in infrastructure, Compos. Part Appl. Sci. Manuf. 43 (2012) 1419–1429.

DOI: 10.1016/j.compositesa.2011.11.019

Google Scholar

[3] A. Ashori, Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites, J. Compos. Mater. 47 (2013) 149-154.

DOI: 10.1177/0021998312437234

Google Scholar

[4] A. Ashori, A. Nourbakhsh, Characteristics of wood-fiber plastic composites made of recycled materials, Waste Manag. 29 (2009) 1291-1295.

DOI: 10.1016/j.wasman.2008.09.012

Google Scholar

[5] A. Toghyani, A. Mohsen, Effect of strain rate and temperature on press forming of extruded WPC profiles, Composite Structures 180 (2017) 845-852.

DOI: 10.1016/j.compstruct.2017.08.046

Google Scholar

[6] Y. Bai, T. Keller, T. Vallée, Modeling of stiffness of FRP composites under elevated and high temperatures, Compos Sci Technol, 68 (15–16) (2008) 3099-3106.

DOI: 10.1016/j.compscitech.2008.07.005

Google Scholar

[7] R. Huang, B.J. Kim, S. Lee, Y. Zhang, Q. Wu, Co-extruded wood-plastic composites with talc-filled shells: morphology, mechanical, and thermal expansion performance, Bioresources, 8 (2) (2013) 2283-2299.

DOI: 10.15376/biores.8.2.2283-2299

Google Scholar

[8] C. Vardaan, T. Kärki, J. Varis, Optimization of Compression Molding Process Parameters for NFPC Manufacturing Using Taguchi Design of Experiment and Moldflow Analysis, Processes 9 (2021) 1853–1863.

DOI: 10.3390/pr9101853

Google Scholar

[9] ASTM D638-10 Standard Test Method for Tensile Properties of Plastics, ASTM International (2010).

Google Scholar

[10] ASTM D790-17 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International (2017).

DOI: 10.1520/d0790-15e01

Google Scholar

[11] ASTM E1269-11 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM International (2018).

Google Scholar

[12] P. Tanninen, V. Leminen, S. Matthews, M. Kainusalmi, J. Varis, Process cycle optimization in press forming of paperboard, Packaging Technology and Science 31 (2018) 369–376.

DOI: 10.1002/pts.2331

Google Scholar

[13] V. Leminen, S. Matthews, P. Tanninen, J. Varis, Effect of creasing tool dimensions on the quality of press-formed paperboard trays, Procedia Manuf. 25 (2018) 397–403.

DOI: 10.1016/j.promfg.2018.06.109

Google Scholar

[14] P. Tanninen, V. Leminen, A. Pesonen, S. Matthews, J. Varis, Surface fracture prevention in paperboard press forming with advanced force control, Procedia Manuf. 47 (2020) 80–84.

DOI: 10.1016/j.promfg.2020.04.140

Google Scholar

[15] J. Phelps, C. L. Tucker, An Anisotropic Rotary Diffusion Model for Fiber Orientation in Short- and Long-Fiber Thermoplastics. J. Non-Newtonian F. Mech. 156 (2009) 165–176.

DOI: 10.1016/j.jnnfm.2008.08.002

Google Scholar