[1]
R. Steward, Wood fiber composites: Fierce competition drives advances in equipment, materials and processes, Plast. Eng. 63 (2007) 21-28.
DOI: 10.1002/j.1941-9635.2007.tb00050.x
Google Scholar
[2]
D.B. Dittenber, H.V.S. Gangarao, Critical review of recent publications on use of natural composites in infrastructure, Compos. Part Appl. Sci. Manuf. 43 (2012) 1419–1429.
DOI: 10.1016/j.compositesa.2011.11.019
Google Scholar
[3]
A. Ashori, Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites, J. Compos. Mater. 47 (2013) 149-154.
DOI: 10.1177/0021998312437234
Google Scholar
[4]
A. Ashori, A. Nourbakhsh, Characteristics of wood-fiber plastic composites made of recycled materials, Waste Manag. 29 (2009) 1291-1295.
DOI: 10.1016/j.wasman.2008.09.012
Google Scholar
[5]
A. Toghyani, A. Mohsen, Effect of strain rate and temperature on press forming of extruded WPC profiles, Composite Structures 180 (2017) 845-852.
DOI: 10.1016/j.compstruct.2017.08.046
Google Scholar
[6]
Y. Bai, T. Keller, T. Vallée, Modeling of stiffness of FRP composites under elevated and high temperatures, Compos Sci Technol, 68 (15–16) (2008) 3099-3106.
DOI: 10.1016/j.compscitech.2008.07.005
Google Scholar
[7]
R. Huang, B.J. Kim, S. Lee, Y. Zhang, Q. Wu, Co-extruded wood-plastic composites with talc-filled shells: morphology, mechanical, and thermal expansion performance, Bioresources, 8 (2) (2013) 2283-2299.
DOI: 10.15376/biores.8.2.2283-2299
Google Scholar
[8]
C. Vardaan, T. Kärki, J. Varis, Optimization of Compression Molding Process Parameters for NFPC Manufacturing Using Taguchi Design of Experiment and Moldflow Analysis, Processes 9 (2021) 1853–1863.
DOI: 10.3390/pr9101853
Google Scholar
[9]
ASTM D638-10 Standard Test Method for Tensile Properties of Plastics, ASTM International (2010).
Google Scholar
[10]
ASTM D790-17 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International (2017).
DOI: 10.1520/d0790-15e01
Google Scholar
[11]
ASTM E1269-11 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM International (2018).
Google Scholar
[12]
P. Tanninen, V. Leminen, S. Matthews, M. Kainusalmi, J. Varis, Process cycle optimization in press forming of paperboard, Packaging Technology and Science 31 (2018) 369–376.
DOI: 10.1002/pts.2331
Google Scholar
[13]
V. Leminen, S. Matthews, P. Tanninen, J. Varis, Effect of creasing tool dimensions on the quality of press-formed paperboard trays, Procedia Manuf. 25 (2018) 397–403.
DOI: 10.1016/j.promfg.2018.06.109
Google Scholar
[14]
P. Tanninen, V. Leminen, A. Pesonen, S. Matthews, J. Varis, Surface fracture prevention in paperboard press forming with advanced force control, Procedia Manuf. 47 (2020) 80–84.
DOI: 10.1016/j.promfg.2020.04.140
Google Scholar
[15]
J. Phelps, C. L. Tucker, An Anisotropic Rotary Diffusion Model for Fiber Orientation in Short- and Long-Fiber Thermoplastics. J. Non-Newtonian F. Mech. 156 (2009) 165–176.
DOI: 10.1016/j.jnnfm.2008.08.002
Google Scholar