Simulation of Wrinkling during Forming of Binder Stabilized UD-NCF Preforms in Wind Turbine Blade Manufacturing

Article Preview

Abstract:

Binder stabilized preforms are getting increased attention in the wind turbine industry with the aim to increase automation in the production of large blades. In this context a preform is a stack of dry unidirectional glass fiber non-crimp fabrics (UD-NCF), which is consolidated using a polymeric binder. The preform is manufactured in a separate mold, and subsequently placed in the main blade mold. During placement of preforms, fiber wrinkling may occur due to the deformation of the preform. To accommodate this problem, we propose a predictive simulation model that can be used to investigate how different process parameters influence the wrinkle creation. Most forming simulation models in the literature consider frictional laws in the inter-ply interface for multi-layered fabrics. In this work the binder interfaces between the layers are modelled using a cohesive traction-separation law to accurately model binder degradation and wrinkle creation during preform deformation. The model predictions are compared with full thickness preform coupon specimens.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. J. Bender, S. R. Hallett, and E. Lindgaard, Investigation of the effect of wrinkle features on wind turbine blade sub-structure strength, Compos. Struct. 218 (2019) 39–49.

DOI: 10.1016/j.compstruct.2019.03.026

Google Scholar

[2] C. Krogh et al., A simple MATLAB draping code for fiber-reinforced composites with application to optimization of manufacturing process parameters, Struct. Multidiscipl. Optim 64 (2021) 457–471.

DOI: 10.1007/s00158-021-02925-z

Google Scholar

[3] P. Boisse, J. Huang, and E. Guzman-Maldonado, Analysis and modeling of wrinkling in composite forming, J. Compos. Sci. 5(3) (2021) 1–16.

DOI: 10.3390/jcs5030081

Google Scholar

[4] P. Harrison, M. F. Alvarez, and D. Anderson, Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics, Int. J. Solids. Struct. 154 (2018) 2–18.

DOI: 10.1016/j.ijsolstr.2016.11.008

Google Scholar

[5] S. Bel, N. Hamila, P. Boisse, and F. Dumont, Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding, Compos. A: Appl. Sci. Manuf. 43(12) (2012) 2269–2277.

DOI: 10.1016/j.compositesa.2012.08.005

Google Scholar

[6] G. Creech and A. K. Pickett, Meso-modelling of Non-crimp Fabric composites for coupled drape and failure analysis, J. Mater. Sci. 41(20) (2006) 6725–6736.

DOI: 10.1007/s10853-006-0213-6

Google Scholar

[7] F. J. Schirmaier, D. Dörr, F. Henning, and L. Kärger, A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF), Compos. A: Appl. Sci. Manuf. 102 (2017) 322–335.

DOI: 10.1016/j.compositesa.2017.08.009

Google Scholar

[8] J. P. H. Belnoue, O. J. Nixon-Pearson, A. J. Thompson, D. S. Ivanov, K. D. Potter, and S. R. Hallett, Consolidation-driven defect generation in thick composite parts, J. Manuf. Sci. Eng. 140(7) (2018).

DOI: 10.1115/1.4039555

Google Scholar

[9] E. Guzman-Maldonado, P. Wang, N. Hamila, and P. Boisse, Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites, Compos. Struct. 208 (2018) 213–223.

DOI: 10.1016/j.compstruct.2018.10.018

Google Scholar

[10] A. J. Thompson, J. P. H. Belnoue, and S. R. Hallett, Modelling defect formation in textiles during the double diaphragm forming process, Compos. B: Eng. 202 (2020).

DOI: 10.1016/j.compositesb.2020.108357

Google Scholar

[11] K. Vanclooster, S. V. Lomov, and I. Verpoest, Simulation of multi-layered composites forming, Int. J. Mater. Form. 3 (2010) 695-698.

DOI: 10.1007/s12289-010-0865-2

Google Scholar

[12] F. Henning, L. Kärger, D. Dörr, F. J. Schirmaier, J. Seuffert, and A. Bernath, Fast processing and continuous simulation of automotive structural composite components, Compos. Sci. Technol. 171 (2019) 261–279.

DOI: 10.1016/j.compscitech.2018.12.007

Google Scholar

[13] L. A. A. Beex and R. H. J. Peerlings, An experimental and computational study of laminated paperboard creasing and folding, Int. J. Solids. Struct. 46(24) (2009) 4192-4207.

DOI: 10.1016/j.ijsolstr.2009.08.012

Google Scholar

[14] B. Durif, N. Moulin, S. Drapier, L. Bouquerel, and M. Blais, Challenges in modelling the forming of unidirectional HiTape® reinforcements, ESAFORM 2021, Liège, Belgium.

DOI: 10.25518/esaform21.2299

Google Scholar

[15] M. L. Benzeggagh and M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatur, Compos. Sci. Technol. 56 (1996) 439–449.

DOI: 10.1016/0266-3538(96)00005-x

Google Scholar

[16] C. Krogh, P. H. Broberg, J. Kepler, and J. Jakobsen, Comprehending the bending: A comparison of different test setups for measuring the out-of-plane flexural rigidity of a UD fabric, ESAFORM 2022, Braga, Portugal.

DOI: 10.4028/p-r883x4

Google Scholar

[17] E. de Bilbao, D. Soulat, G. Hivet, and A. Gasser, Experimental Study of Bending Behaviour of Reinforcements, Exp. Mech. 50(3) (2010) 333–351.

DOI: 10.1007/s11340-009-9234-9

Google Scholar

[18] B. Liang, P. Chaudet, and P. Boisse, Curvature determination in the bending test of continuous fibre reinforcements, Strain 53(1) (2017) 1–12.

DOI: 10.1111/str.12213

Google Scholar

[19] S. Schmidt, T. Mahrholz, A. Kühn, and P. Wierach, Powder binders used for the manufacturing of wind turbine rotor blades. Part 1. Characterization of resin-binder interaction and preform properties, Polym. Compos. 39(3) (2018) 708–717.

DOI: 10.1002/pc.23988

Google Scholar

[20] M. Thor, M. G. R. Sause, and R. M. Hinterhölzl, Mechanisms of origin and classification of out-of-plane fiber waviness in composite materials — A review, J. Compos. Sci. 4(3) (2020).

DOI: 10.3390/jcs4030130

Google Scholar