A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix

Article Preview

Abstract:

A numerical model is presented to simulate the crystallization kinetics in fiber-based composite with thermoplastic semicrystalline matrix. The proposed model, based on Schneider's formalism, considers the specificity of crystalline entities growing in confined medium such as fibrous composite. Indeed, transcrystallization has been experimentally observed many times and its effects on both kinetics and mechanical properties have been largely demonstrated. As an application, this paper aims at illustrating this former effect with a finite element (FE) simulation of the cooling down of a plate. The simulated materials are polypropylene alone and a fiber-based composite with a polypropylene matrix. Information on the temperature, the rate of transformation and the microstructure are obtained from both materials and compared to emphasize the contribution of transcrystallization.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A. Benard and S. G. Advani, An analytical model for spherulitic growth in fiber-reinforced polymers,, p.11.

Google Scholar

[2] Y. Bin and H. Wang, Transcrystallization in Polymer Composites and Nanocomposites,, in Crystallization in Multiphase Polymer Systems, pp.341-365, Elsevier, (2018).

DOI: 10.1016/b978-0-12-809453-2.00012-8

Google Scholar

[3] A. Durin, N. Boyard, J.-L. Bailleul, N. Billon, J.-L. Chenot, and J.-M. Haudin, Semianalytical models to predict the crystallization kinetics of thermoplastic fibrous composites,, Journal of Applied Polymer Science, vol. 134, Feb. 2017. Number: 8.

DOI: 10.1002/app.44508

Google Scholar

[4] J.-M. Haudin and J.-L. Chenot, Numerical and Physical Modeling of Polymer Crystallization,, p.8, (2004).

Google Scholar

[5] H. Fang, X. Wang, J. Gu, Z. Li, S. Ruan, and C. Shen, A novel crystallization kinetics model of transcrystalline used for crystallization behavior simulation of short carbon fiber�reinforced polymer composites,, Polymer Engineering & Science, vol. 59, pp.854-862, Apr. 2019. Number: 4.

DOI: 10.1002/pen.25028

Google Scholar

[6] H. Fang, J. Gu, Z. Li, S. Ruan, and C. Shen, An analytical model for temperature and crystalline evolution analysis of carbon fiber reinforced polymer composites during cooling,, Polymer Composites, vol. 41, pp.4074-4083, Oct. (2020).

DOI: 10.1002/pc.25694

Google Scholar

[7] Kolmogoroff, On the statistical theory of the crystallization of metals,, (1937).

Google Scholar

[8] W. Schneider, A. Köppl, and J. Berger, Non-isothermal Crystallization - Crystallization of Polymers - System of Rate Equations,, Intern. Polymer Processing II, pp.151-154, (1988).

DOI: 10.3139/217.880150

Google Scholar

[9] C. Angelloz, R. Fulchiron, A. Douillard, B. Chabert, R. Fillit, A. Vautrin, and L. David, Crystallization of Isotactic Polypropylene under High Pressure (γ Phase),, Macromolecules, vol. 33, pp.4138-4145, May 2000. Number: 11.

DOI: 10.1021/ma991813e

Google Scholar

[10] E. Koscher and R. Fulchiron, Influence of shear on polypropylene crystallization: morphology development and kinetics," Polymer, vol. 43, pp.6931-6942, Jan. 2002. Number: 25.[11] J. I. Lauritzen and J. D. Hoffman, "Theory of formation of polymer crystals with folded chains in dilute solution,, Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, vol. 64A, p.73, Jan. 1960. Number: 1.

DOI: 10.1016/s0032-3861(02)00628-6

Google Scholar

[12] M. Avrami, Kinetics of Phase Change. I General Theory,, The Journal of Chemical Physics, vol. 7, pp.1103-1112, Dec. 1939. Number: 12.

Google Scholar

[13] BRAHMIA Nadia, Contribution à la modélisation de la cristallisation des polymères sous cisaillement : application à l'injection des polymères semi-cristallins. PhD, Institut National des Sciences Appliquées de Lyon, Lyon, France, (2007).

DOI: 10.3917/dunod.etien.2012.01.0173

Google Scholar

[14] M. Zinet, R. El Otmani, M. Boutaous, and P. Chantrenne, Numerical modeling of nonisothermal polymer crystallization kinetics: Flow and thermal effects,, Polymer Engineering & Science, vol. 50, pp.2044-2059, Oct. (2010).

DOI: 10.1002/pen.21733

Google Scholar

[15] M. Boutaous, P. Bourgin, and M. Zinet, Thermally and flow induced crystallization of polymers at low shear rate,, Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp.227-237, Mar. (2010).

DOI: 10.1016/j.jnnfm.2009.12.005

Google Scholar

[16] J.-M. Bergheau and R. Fortunier, Finite Element Simulation of Heat Transfer. London, UK: ISTE, Jan. (2008).

Google Scholar