[1]
A. Benard and S. G. Advani, An analytical model for spherulitic growth in fiber-reinforced polymers,, p.11.
Google Scholar
[2]
Y. Bin and H. Wang, Transcrystallization in Polymer Composites and Nanocomposites,, in Crystallization in Multiphase Polymer Systems, pp.341-365, Elsevier, (2018).
DOI: 10.1016/b978-0-12-809453-2.00012-8
Google Scholar
[3]
A. Durin, N. Boyard, J.-L. Bailleul, N. Billon, J.-L. Chenot, and J.-M. Haudin, Semianalytical models to predict the crystallization kinetics of thermoplastic fibrous composites,, Journal of Applied Polymer Science, vol. 134, Feb. 2017. Number: 8.
DOI: 10.1002/app.44508
Google Scholar
[4]
J.-M. Haudin and J.-L. Chenot, Numerical and Physical Modeling of Polymer Crystallization,, p.8, (2004).
Google Scholar
[5]
H. Fang, X. Wang, J. Gu, Z. Li, S. Ruan, and C. Shen, A novel crystallization kinetics model of transcrystalline used for crystallization behavior simulation of short carbon fiber�reinforced polymer composites,, Polymer Engineering & Science, vol. 59, pp.854-862, Apr. 2019. Number: 4.
DOI: 10.1002/pen.25028
Google Scholar
[6]
H. Fang, J. Gu, Z. Li, S. Ruan, and C. Shen, An analytical model for temperature and crystalline evolution analysis of carbon fiber reinforced polymer composites during cooling,, Polymer Composites, vol. 41, pp.4074-4083, Oct. (2020).
DOI: 10.1002/pc.25694
Google Scholar
[7]
Kolmogoroff, On the statistical theory of the crystallization of metals,, (1937).
Google Scholar
[8]
W. Schneider, A. Köppl, and J. Berger, Non-isothermal Crystallization - Crystallization of Polymers - System of Rate Equations,, Intern. Polymer Processing II, pp.151-154, (1988).
DOI: 10.3139/217.880150
Google Scholar
[9]
C. Angelloz, R. Fulchiron, A. Douillard, B. Chabert, R. Fillit, A. Vautrin, and L. David, Crystallization of Isotactic Polypropylene under High Pressure (γ Phase),, Macromolecules, vol. 33, pp.4138-4145, May 2000. Number: 11.
DOI: 10.1021/ma991813e
Google Scholar
[10]
E. Koscher and R. Fulchiron, Influence of shear on polypropylene crystallization: morphology development and kinetics," Polymer, vol. 43, pp.6931-6942, Jan. 2002. Number: 25.[11] J. I. Lauritzen and J. D. Hoffman, "Theory of formation of polymer crystals with folded chains in dilute solution,, Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, vol. 64A, p.73, Jan. 1960. Number: 1.
DOI: 10.1016/s0032-3861(02)00628-6
Google Scholar
[12]
M. Avrami, Kinetics of Phase Change. I General Theory,, The Journal of Chemical Physics, vol. 7, pp.1103-1112, Dec. 1939. Number: 12.
Google Scholar
[13]
BRAHMIA Nadia, Contribution à la modélisation de la cristallisation des polymères sous cisaillement : application à l'injection des polymères semi-cristallins. PhD, Institut National des Sciences Appliquées de Lyon, Lyon, France, (2007).
DOI: 10.3917/dunod.etien.2012.01.0173
Google Scholar
[14]
M. Zinet, R. El Otmani, M. Boutaous, and P. Chantrenne, Numerical modeling of nonisothermal polymer crystallization kinetics: Flow and thermal effects,, Polymer Engineering & Science, vol. 50, pp.2044-2059, Oct. (2010).
DOI: 10.1002/pen.21733
Google Scholar
[15]
M. Boutaous, P. Bourgin, and M. Zinet, Thermally and flow induced crystallization of polymers at low shear rate,, Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp.227-237, Mar. (2010).
DOI: 10.1016/j.jnnfm.2009.12.005
Google Scholar
[16]
J.-M. Bergheau and R. Fortunier, Finite Element Simulation of Heat Transfer. London, UK: ISTE, Jan. (2008).
Google Scholar