Machining of Additive Manufactured Metal Alloys

Article Preview

Abstract:

Additive Manufacturing of metal alloys offers unique advantages for producing net-shape components of complex geometries with very little waste of material. Nevertheless, machining operations may be needed on functional surfaces to get the required surface finish and geometrical tolerances. This poses challenging issues since the microstructural features characterizing the AM alloys are drastically different from those of the wrought alloys of the same chemical composition, which, in turn, may affect the mechanical and machining response to a great extent. This paper shows that both the machined surface integrity and tool wear are greatly affected by the microstructural features induced by the previous AM process as well as by the build-up orientation.

You have full access to the following eBook

Info:

Periodical:

Pages:

15-24

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] T. DebRoy, H.L. Wie, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Mileweski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties. Progress in Materials Science 92 (2018) 112-224.

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[2] ASTM International, F2792-12A – Standard terminology for Additive Manufacturing technologies.

Google Scholar

[3] S. Sartori, L. Moro, A. Ghiotti, S. Bruschi, On the tool wear mechanisms in dry and cryogenic turning Additive Manufactured titanium alloys. Tribology International 105 (2017) 264-273.

DOI: 10.1016/j.triboint.2016.09.034

Google Scholar

[4] A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani, Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy. Wear 328-329 (2015) 89-99.

DOI: 10.1016/j.wear.2015.01.030

Google Scholar

[5] L. Lizzul, M. Sorgato, R. Bertolini, A. Ghiotti, S. Bruschi, Influence of additive manufacturing-induced anisotropy on tool wear in end milling of Ti6Al4V. Tribology International 146 (2020) 106200.

DOI: 10.1016/j.triboint.2020.106200

Google Scholar

[6] L. Lizzul, M. Sorgato, R. Bertolini, A. Ghiotti, S. Bruschi, Anisotropy effect of additively manufactured Ti6Al4V titanium alloy on surface quality after milling. Precision Engineering 67 (2021) 301-310.

DOI: 10.1016/j.precisioneng.2020.10.003

Google Scholar

[7] O. Oyelola, P. Craforth, R. M'Saoubi, A.T. Clare, Machining of additively manufactured parts: implications for surface integrity. Procedia CIRP 45 (2016) 119-122.

DOI: 10.1016/j.procir.2016.02.066

Google Scholar

[8] T. Grove, B. Denkena, O. Maib, A. Krodel, H. Schwab, U. Kuhn, Cutting mechanism and surface integrity in milling of Ti-5553 processed by selective laser melting. Journal of Mechanical Science and Technology 32(10) (2018) 4883-4892.

DOI: 10.1007/s12206-018-0936-8

Google Scholar

[9] P.C. Priarone, S. Rizzuti, L. Settineri, G. Vergnano, Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminade. Journal of Materials Processing Technology 212 (2012) 2619-2628.

DOI: 10.1016/j.jmatprotec.2012.07.021

Google Scholar

[10] P.C Priarone, S. Rizzuti, S. Ruffa, L. Settineri, Drilling experiments on a gamma titanium aluminide obtained via electron beam melting. International Journal of Advanced Manufacturing Technology 69 (2013) 483-490.

DOI: 10.1007/s00170-013-5050-6

Google Scholar

[11] S. Periane, A. Duchosol, S. Vaudreuil, H. Chibane, A. Morandeau, M.A. Xavier, R. Leroy, Selection of machining condition on surface integrity of additive and conventional Inconel 718. Procedia CIRP 87 (2020) 333-338.

DOI: 10.1016/j.procir.2020.02.092

Google Scholar

[12] F. Careri, D. Umbrello, K. Essa, M.M. Attallah, S. Imbrogno, The effect of heat treatments on the tool wear of hybrid additive manufacturing of IN718. Wear 470 (2021) 203617.

DOI: 10.1016/j.wear.2021.203617

Google Scholar

[13] M. Sadiq, M.N. Hoang, N. Valencia, S. Obeidat, N.P. Hung, Experimental study of micromilling selective laser melted Inconel 718 superalloy. Procedia Manufacturing 26 (2018) 983-992.

DOI: 10.1016/j.promfg.2018.07.129

Google Scholar

[14] P. Fernandez-Zelaia, V. Nguyen, H. Zhang, A. Kumar, S.N. Melkote, The effect of material anisotropy on secondary processing of additively manufactured CoCrMo. Additive Manufacturing 29 (2019) 100764.

DOI: 10.1016/j.addma.2019.06.015

Google Scholar

[15] A. Fortunato, A. Lulaj, S. Melkote, E. Liverani, A. Ascari, D. Umbrello, Milling of maraging steel components produced by selective laser melting. International Journal of Advanced Manufacturing Technology 94 (2018) 1895-1902.

DOI: 10.1007/s00170-017-0922-9

Google Scholar

[16] L. Lizzul, M. Sorgato, R. Bertolini, A. Ghiotti, S. Bruschi, F. Fabro, S. Rech, On the influence of laser cladding parameters and number of deposited layers on as-built and machined H13 tool steel multilayered claddings. CIRP Journal of Manufacturing Science and Technology 35 (2021) 361-370.

DOI: 10.1016/j.cirpj.2021.07.003

Google Scholar

[17] M. Sorgato, R. Bertolini, A. ghiotti, S. Bruschi, Tool wear analysis in high-frequency vibration-assisted milling of additive manufactured Ti6Al4V alloy. Wear 477 (2021) 203814.

DOI: 10.1016/j.wear.2021.203814

Google Scholar

[18] M. Dumas, F. Cabanettes, R. Kaminski, F. Valiorgue, E. Picot, L. Lefavre, C. Grosjean, J. Rech, Influence of finish cutting operations on the fatigue performance of Ti6al4V parts produced by Selective Laser Melting. Procedia CIRP 71 (2018) 429-434.

DOI: 10.1016/j.procir.2018.05.054

Google Scholar

[19] S. Bagehorn, J. Wehr, H.J. Maier, Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. International Journal of Fatigue 102 (2017) 135-142.

DOI: 10.1016/j.ijfatigue.2017.05.008

Google Scholar

[20] S. Bruschi, R. Bertolini, F. Medea, A. Bordin, A. Ghiotti, Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications. Tribology International 102 (2016) 133-142.

DOI: 10.1016/j.triboint.2016.05.036

Google Scholar

[21] D. Umbrello, S. Imbrogno, A. Bordin, S. Bruschi, 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti6Al4V alloy. CIRP Journal – Manufacturing Science and Technology 18 (2017) 92-100.

DOI: 10.1016/j.cirpj.2016.10.004

Google Scholar

[22] E. Segebade, M. Gerstenmeyer, S. Dietrich, F. Zanger, V. Schulze V, Influence of anisotropy of additively manufacturing AlSi10Mg parts on chip formation during orthogonal cutting. Procedia CIRP 82 (2019) 113-118.

DOI: 10.1016/j.procir.2019.04.043

Google Scholar

[23] O. Oyelola, A. Jackson-Crisp, P. Crawforth, D.M. Pieris, R.J. Smith, R. M'Saoubi, A.T. Clare, Machining of directed energy deposited Ti6Al4V using adaptive control. Journal of Manufacturing Processes 54 (2020) 240-250.

DOI: 10.1016/j.jmapro.2020.03.004

Google Scholar

[24] J.M. Flynn, A. Shokrani, S.T. Newman, V. Dhokian, Hybrid additive and subtractive machine tools– research and industrial developments. International Journal of Machine Tools and Manufacture 101 (2016) 79-101.

DOI: 10.1016/j.ijmachtools.2015.11.007

Google Scholar

[25] J. Moritz, A. Seidel, M. Kopper, J. Bretschneider, J. Gumpinger, T. Finaske et al., Hybrid manufacturing of titanium Ti6Al4V combining laser metal deposition and cryogenic milling. International Journal of Advanced Manufacturing Technology 107(7) (2020) 2995-3009.

DOI: 10.1007/s00170-020-05212-1

Google Scholar