Laser Metal Deposition with Coaxial Wire Feeding for the Automated and Reliable Build-Up of Solid Metal Parts

Article Preview

Abstract:

Due to their outstanding characteristics, additive manufacturing processes are attracting increasing industrial interest. Among these processes, laser metal deposition (LMD) is an innovative technology for the production of metal components. In order to create three-dimensional parts, wire or powder is deposited layer-wise onto a substrate. When wire is used as feedstock, major drawbacks of the powder-based process, such as the low material usage, contamination of the process cell with metal powder, and health or safety issues, can be overcome or even avoided. In addition, recent developments in laser optics allow for a coaxial wire feeding in the center of an annular laser beam. This eliminates the strong directional dependence of the process when feeding the wire laterally. However, wire-based LMD is highly sensitive to process disturbances, which impedes its broader industrial application. Since it is necessary to completely melt the fed wire to achieve a stable process, self-regulating effects such as overspray in powder-based LMD are not present. In contrast to the widely investigated thin walls, the build-up of multi-track solid structures poses a particular challenge. Therefore, process strategies for producing such solid structures are presented in this paper. The experiments were carried out using a laser processing head that enables coaxial wire feeding (CoaxPrinter, Precitec). By systematically varying the lateral overlap between adjacent weld beads, it was shown that an optimum exists at which minimum surface waviness is achieved. Based on this, defect-free multi-layer solid components could be generated in a reproducible manner. During the process, the melt pool temperature was evaluated using a pyrometer. Furthermore, a microscopic examination of the resulting parts was conducted. The results obtained show the need for process monitoring and control, for which a novel and holistic approach has been developed.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A. Dass, A. Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings 9 (2019) 7, p.418.

DOI: 10.3390/coatings9070418

Google Scholar

[2] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Progress in Materials Science 92 (2018), p.112–224.

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[3] E.W. Teichmann, J. Kelbassa, A. Gasser, S. Tarner, J.H. Schleifenbaum, Effect of wire feeder force control on laser metal deposition process using coaxial laser head, Journal of Laser Applications 33 (2021) 1, p.12041.

DOI: 10.2351/7.0000304

Google Scholar

[4] B.T. Gibson, Y.K. Bandari, B.S. Richardson, A.C. Roschli, B.K. Post, M.C. Borisch, A. Thornton, W.C. Henry, M. Lamsey, L.J. Love, Melt pool monitoring for control and data analytics in large-scale metal additive manufacturing (2019).

Google Scholar

[5] M. Bambach, I. Sizova, F. Silze, M. Schnick, Comparison of laser metal deposition of Inconel 718 from powder, hot and cold wire, Procedia CIRP 74 (2018), p.206–209.

DOI: 10.1016/j.procir.2018.08.095

Google Scholar

[6] S. Ji, F. Liu, T. Shi, G. Fu, S. Shi, Effects of Defocus Distance on Three-Beam Laser Internal Coaxial Wire Cladding, Chin. J. Mech. Eng. 34 (2021) 1.

DOI: 10.1186/s10033-021-00560-9

Google Scholar

[7] M. Lammers, K. Biester, N. Schwarz, J. Hermsdorf, S. Kaierle, H. Ahlers, Automatic changing of weld deposit for additive manufacturing of hybrid metal-glass components using direct laser deposition, Lasers in Manufacturing Conference 2021 (2021).

DOI: 10.1007/978-3-031-05918-6_4

Google Scholar

[8] M. Madarieta-Churruca, J. Pujana-Astarloa, I. Garmendia Saez-de-Heredia, J. Leunda-Arrizabalaga, Additive Manufacturing of Metal Components Using Concentric-Wire Laser Metal Deposition, DYNAII 93 (2018) 1, p.675–680.

DOI: 10.6036/8819

Google Scholar

[9] J. Kelbassa, O. Pütsch, A. Gasser, A. Biber, K. Wissenbach, P. Loosten, J.H. Schleifenbaum, Influence of focal length on the laser metal deposition process with coaxial wire feeding (2019), p.11.

DOI: 10.1117/12.2507799

Google Scholar

[10] M. Motta, A.G. Demir, B. Previtali, High-speed imaging and process characterization of coaxial laser metal wire deposition, Additive Manufacturing 22 (2018), p.497–507.

DOI: 10.1016/j.addma.2018.05.043

Google Scholar

[11] E. Govekar, A. Kuznetsov, A. Jerič, Drop on demand generation from a metal wire by means of an annular laser beam, Journal of Materials Processing Technology 227 (2016), p.59–70.

DOI: 10.1016/j.jmatprotec.2015.07.026

Google Scholar

[12] G. Zhu, D. Li, A. Zhang, G. Pi, Y. Tang, The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition, Optics & Laser Technology 44 (2012) 2, p.349–356.

DOI: 10.1016/j.optlastec.2011.07.013

Google Scholar

[13] S. Donadello, M. Motta, A.G. Demir, B. Previtali, Monitoring of laser metal deposition height by means of coaxial laser triangulation, Optics and Lasers in Engineering 112 (2019), p.136–144.

DOI: 10.1016/j.optlaseng.2018.09.012

Google Scholar

[14] I. Garmendia, J. Pujana, A. Lamikiz, M. Madarieta, J. Leunda, Structured light-based height control for laser metal deposition, Journal of Manufacturing Processes 42 (2019), p.20–27.

DOI: 10.1016/j.jmapro.2019.04.018

Google Scholar

[15] D. Ding, Z. Pan, D. Cuiuri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests, Int J Adv Manuf Technol 81 (2015) 1-4, p.465–481.

DOI: 10.1007/s00170-015-7077-3

Google Scholar

[16] J. Shi, P. Zhu, G. Fu, S. Shi, Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding, Optics & Laser Technology 101 (2018), p.341–348.

DOI: 10.1016/j.optlastec.2017.10.035

Google Scholar

[17] H. Pajukoski, J. Näkki, S. Thieme, J. Tuominen, S. Nowotny, P. Vuoristo, High performance corrosion resistant coatings by novel coaxial cold- and hot-wire laser cladding methods, Journal of Laser Applications 28 (2016) 1, p.12011.

DOI: 10.2351/1.4936988

Google Scholar

[18] L. Budde, M. Lammers, J. Hermsdorf, S. Kaierle, L. Overmeyer, Process development for laser hot-wire deposition welding with high-carbon cladding Material AISI52100, Lasers in Manufacturing Conference 2021 (2021).

DOI: 10.1016/j.procir.2022.08.054

Google Scholar

[19] J. Kelbassa, A. Gasser, J. Bremer, O. Pütsch, R. Poprawe, J. Henrich Schleifenbaum, Equipment and process windows for laser metal deposition with coaxial wire feeding, Journal of Laser Applications 31 (2019) 2, p.22320.

DOI: 10.2351/1.5096112

Google Scholar

[20] S.H. Oliari, A.S.C.M. D'Oliveira, M. Schulz, Additive Manufacturing of H11 with Wire-Based Laser Metal Deposition, Soldagem & Inspeção 22 (2017) 4, p.466–479.

DOI: 10.1590/0104-9224/si2204.06

Google Scholar

[21] Y. Li, Y. Sun, Q. Han, G. Zhang, I. Horváth, Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts, Journal of Materials Processing Technology 252 (2018), p.838–848.

DOI: 10.1016/j.jmatprotec.2017.10.017

Google Scholar

[22] L. Nguyen, J. Buhl, M. Bambach, Multi-bead Overlapping Models for Tool Path Generation in Wire-Arc Additive Manufacturing Processes, Procedia Manufacturing 47 (2020), p.1123–1128.

DOI: 10.1016/j.promfg.2020.04.129

Google Scholar

[23] J. Xiong, G. Zhang, H. Gao, L. Wu, Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing, Robotics and Computer-Integrated Manufacturing 29 (2013) 2, p.417–423.

DOI: 10.1016/j.rcim.2012.09.011

Google Scholar

[24] D. Ding, Z. Pan, D. Cuiuri, H. Li, A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM), Robotics and Computer-Integrated Manufacturing 31 (2015), p.101–110.

DOI: 10.1016/j.rcim.2014.08.008

Google Scholar

[25] S. Suryakumar, K.P. Karunakaran, A. Bernard, U. Chandrasekhar, N. Raghavender, D. Sharma, Weld bead modeling and process optimization in Hybrid Layered Manufacturing, Computer-Aided Design 43 (2011) 4, p.331–344.

DOI: 10.1016/j.cad.2011.01.006

Google Scholar

[26] A. Zapata, C. Bernauer, M. Hell, M.F. Zaeh, Studies on the direction-independent temperature measurement of a coaxial laser metal deposition process with wire, Lasers in Manufacturing Conference 2021 (2021).

DOI: 10.1016/j.procir.2022.08.027

Google Scholar

[27] N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing 8 (2015), p.12–35.

DOI: 10.1016/j.addma.2015.07.002

Google Scholar

[28] T. Hua, C. Jing, L. Xin, Z. Fengying, H. Weidong, Research on molten pool temperature in the process of laser rapid forming, Journal of Materials Processing Technology 198 (2008) 1-3, p.454–462.

DOI: 10.1016/j.jmatprotec.2007.06.090

Google Scholar

[29] H. Wang, W. Liu, Z. Tang, Y. Wang, X. Mei, K.M. Saleheen, Z. Wang, H. Zhang, Review on adaptive control of laser-directed energy deposition, Opt. Eng. 59 (2020) 07, p.1.

DOI: 10.1117/1.oe.59.7.070901

Google Scholar

[30] S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, A.T. Clare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Materials & Design 95 (2016), p.431–445.

DOI: 10.1016/j.matdes.2016.01.099

Google Scholar

[31] L. Song, J. Mazumder, Feedback Control of Melt Pool Temperature During Laser Cladding Process, IEEE Trans. Contr. Syst. Technol. 19 (2011) 6, p.1349–1356.

DOI: 10.1109/tcst.2010.2093901

Google Scholar

[32] G. Bi, A. Gasser, K. Wissenbach, A. Drenker, R. Poprawe, Characterization of the process control for the direct laser metallic powder deposition, Surface and Coatings Technology 201 (2006) 6, p.2676–2683.

DOI: 10.1016/j.surfcoat.2006.05.006

Google Scholar

[33] L. Tang, R.G. Landers, Melt Pool Temperature Control for Laser Metal Deposition Processes—Part I: Online Temperature Control, Journal of Manufacturing Science and Engineering 132 (2010) 1.

DOI: 10.1115/1.4000882

Google Scholar

[34] B.T. Gibson, Y.K. Bandari, B.S. Richardson, W.C. Henry, E.J. Vetland, T.W. Sundermann, L.J. Love, Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V, Additive Manufacturing 32 (2020), p.100993.

DOI: 10.1016/j.addma.2019.100993

Google Scholar

[35] D. Tyralla, T. Seefeld, Temperature field based closed-loop control of laser hot wire cladding for low dilution, Procedia CIRP 94 (2020), p.451–455.

DOI: 10.1016/j.procir.2020.09.163

Google Scholar

[36] M. Akbari, R. Kovacevic, Closed loop control of melt pool width in robotized laser powder–directed energy deposition process, Int J Adv Manuf Technol 104 (2019) 5-8, p.2887–2898.

DOI: 10.1007/s00170-019-04195-y

Google Scholar

[37] A. Heralić, Monitoring and control of robotized laser metal-wire deposition. Zugl.: Göteborg, Univ., Diss., 2012, Chalmers Univ. of Technology, Göteborg, 2012. ISBN: 978-91-7385-655-3.

Google Scholar

[38] I. Garmendia, J. Pujana, A. Lamikiz, J. Flores, M. Madarieta, Development of an Intra-Layer Adaptive Toolpath Generation Control Procedure in the Laser Metal Wire Deposition Process, Materials (Basel, Switzerland) 12 (2019) 3.

DOI: 10.3390/ma12030352

Google Scholar

[39] M. Buhr, J. Weber, J.-P. Wenzl, M. Möller, C. Emmelmann, Influences of process conditions on stability of sensor controlled robot-based laser metal deposition, Procedia CIRP 74 (2018), p.149–153.

DOI: 10.1016/j.procir.2018.08.067

Google Scholar

[40] L. Song, V. Bagavath-Singh, B. Dutta, J. Mazumder, Control of melt pool temperature and deposition height during direct metal deposition process, Int J Adv Manuf Technol 58 (2012) 1-4, p.247–256.

DOI: 10.1007/s00170-011-3395-2

Google Scholar

[41] J. Flores, I. Garmendia, Cabanes Axpe, Thermal Monitoring and Control by Infrared Camera in the Manufacture of Parts with Laser Metal Deposition, DYNAII 95 (2020) 1, p.360–364.

DOI: 10.6036/9379

Google Scholar

[42] A. Fathi, A. Khajepour, E. Toyserkani, M. Durali, Clad height control in laser solid freeform fabrication using a feedforward PID controller, Int J Adv Manuf Technol 35 (2007) 3-4, p.280–292.

DOI: 10.1007/s00170-006-0721-1

Google Scholar

[43] Q. Wang, J. Li, M. Gouge, A.R. Nassar, P. Michaleris, E.W. Reutzel, Physics-Based Multivariable Modeling and Feedback Linearization Control of Melt-Pool Geometry and Temperature in Directed Energy Deposition, Journal of Manufacturing Science and Engineering 139 (2017) 2.

DOI: 10.1115/1.4034304

Google Scholar

[44] C. Stadter, M. Schmoeller, M. Zeitler, V. Tueretkan, U. Munzert, M.F. Zaeh, Process control and quality assurance in remote laser beam welding by optical coherence tomography, Journal of Laser Applications 31 (2019) 2, p.22408.

DOI: 10.2351/1.5096103

Google Scholar

[45] M. Schmoeller, C. Stadter, S. Liebl, M.F. Zaeh, Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography, Journal of Laser Applications 31 (2019) 2, p.22409.

DOI: 10.2351/1.5096104

Google Scholar

[46] M. Kogel-Hollacher, M. Strebel, C. Staudenmaier, H.-I. Schneider, D. Regulin, OCT sensor for layer height control in DED using SINUMERIK® controller, in: H. Helvajian, B. Gu, H. Chen (Eds.), Laser 3D Manufacturing VII, SPIE, 2020 - 2020, 112710O-1 - 112710O-5. ISBN: 9781510633056.

DOI: 10.1117/12.2540167

Google Scholar