[1]
A. Dass, A. Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings 9 (2019) 7, p.418.
DOI: 10.3390/coatings9070418
Google Scholar
[2]
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Progress in Materials Science 92 (2018), p.112–224.
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[3]
E.W. Teichmann, J. Kelbassa, A. Gasser, S. Tarner, J.H. Schleifenbaum, Effect of wire feeder force control on laser metal deposition process using coaxial laser head, Journal of Laser Applications 33 (2021) 1, p.12041.
DOI: 10.2351/7.0000304
Google Scholar
[4]
B.T. Gibson, Y.K. Bandari, B.S. Richardson, A.C. Roschli, B.K. Post, M.C. Borisch, A. Thornton, W.C. Henry, M. Lamsey, L.J. Love, Melt pool monitoring for control and data analytics in large-scale metal additive manufacturing (2019).
Google Scholar
[5]
M. Bambach, I. Sizova, F. Silze, M. Schnick, Comparison of laser metal deposition of Inconel 718 from powder, hot and cold wire, Procedia CIRP 74 (2018), p.206–209.
DOI: 10.1016/j.procir.2018.08.095
Google Scholar
[6]
S. Ji, F. Liu, T. Shi, G. Fu, S. Shi, Effects of Defocus Distance on Three-Beam Laser Internal Coaxial Wire Cladding, Chin. J. Mech. Eng. 34 (2021) 1.
DOI: 10.1186/s10033-021-00560-9
Google Scholar
[7]
M. Lammers, K. Biester, N. Schwarz, J. Hermsdorf, S. Kaierle, H. Ahlers, Automatic changing of weld deposit for additive manufacturing of hybrid metal-glass components using direct laser deposition, Lasers in Manufacturing Conference 2021 (2021).
DOI: 10.1007/978-3-031-05918-6_4
Google Scholar
[8]
M. Madarieta-Churruca, J. Pujana-Astarloa, I. Garmendia Saez-de-Heredia, J. Leunda-Arrizabalaga, Additive Manufacturing of Metal Components Using Concentric-Wire Laser Metal Deposition, DYNAII 93 (2018) 1, p.675–680.
DOI: 10.6036/8819
Google Scholar
[9]
J. Kelbassa, O. Pütsch, A. Gasser, A. Biber, K. Wissenbach, P. Loosten, J.H. Schleifenbaum, Influence of focal length on the laser metal deposition process with coaxial wire feeding (2019), p.11.
DOI: 10.1117/12.2507799
Google Scholar
[10]
M. Motta, A.G. Demir, B. Previtali, High-speed imaging and process characterization of coaxial laser metal wire deposition, Additive Manufacturing 22 (2018), p.497–507.
DOI: 10.1016/j.addma.2018.05.043
Google Scholar
[11]
E. Govekar, A. Kuznetsov, A. Jerič, Drop on demand generation from a metal wire by means of an annular laser beam, Journal of Materials Processing Technology 227 (2016), p.59–70.
DOI: 10.1016/j.jmatprotec.2015.07.026
Google Scholar
[12]
G. Zhu, D. Li, A. Zhang, G. Pi, Y. Tang, The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition, Optics & Laser Technology 44 (2012) 2, p.349–356.
DOI: 10.1016/j.optlastec.2011.07.013
Google Scholar
[13]
S. Donadello, M. Motta, A.G. Demir, B. Previtali, Monitoring of laser metal deposition height by means of coaxial laser triangulation, Optics and Lasers in Engineering 112 (2019), p.136–144.
DOI: 10.1016/j.optlaseng.2018.09.012
Google Scholar
[14]
I. Garmendia, J. Pujana, A. Lamikiz, M. Madarieta, J. Leunda, Structured light-based height control for laser metal deposition, Journal of Manufacturing Processes 42 (2019), p.20–27.
DOI: 10.1016/j.jmapro.2019.04.018
Google Scholar
[15]
D. Ding, Z. Pan, D. Cuiuri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests, Int J Adv Manuf Technol 81 (2015) 1-4, p.465–481.
DOI: 10.1007/s00170-015-7077-3
Google Scholar
[16]
J. Shi, P. Zhu, G. Fu, S. Shi, Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding, Optics & Laser Technology 101 (2018), p.341–348.
DOI: 10.1016/j.optlastec.2017.10.035
Google Scholar
[17]
H. Pajukoski, J. Näkki, S. Thieme, J. Tuominen, S. Nowotny, P. Vuoristo, High performance corrosion resistant coatings by novel coaxial cold- and hot-wire laser cladding methods, Journal of Laser Applications 28 (2016) 1, p.12011.
DOI: 10.2351/1.4936988
Google Scholar
[18]
L. Budde, M. Lammers, J. Hermsdorf, S. Kaierle, L. Overmeyer, Process development for laser hot-wire deposition welding with high-carbon cladding Material AISI52100, Lasers in Manufacturing Conference 2021 (2021).
DOI: 10.1016/j.procir.2022.08.054
Google Scholar
[19]
J. Kelbassa, A. Gasser, J. Bremer, O. Pütsch, R. Poprawe, J. Henrich Schleifenbaum, Equipment and process windows for laser metal deposition with coaxial wire feeding, Journal of Laser Applications 31 (2019) 2, p.22320.
DOI: 10.2351/1.5096112
Google Scholar
[20]
S.H. Oliari, A.S.C.M. D'Oliveira, M. Schulz, Additive Manufacturing of H11 with Wire-Based Laser Metal Deposition, Soldagem & Inspeção 22 (2017) 4, p.466–479.
DOI: 10.1590/0104-9224/si2204.06
Google Scholar
[21]
Y. Li, Y. Sun, Q. Han, G. Zhang, I. Horváth, Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts, Journal of Materials Processing Technology 252 (2018), p.838–848.
DOI: 10.1016/j.jmatprotec.2017.10.017
Google Scholar
[22]
L. Nguyen, J. Buhl, M. Bambach, Multi-bead Overlapping Models for Tool Path Generation in Wire-Arc Additive Manufacturing Processes, Procedia Manufacturing 47 (2020), p.1123–1128.
DOI: 10.1016/j.promfg.2020.04.129
Google Scholar
[23]
J. Xiong, G. Zhang, H. Gao, L. Wu, Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing, Robotics and Computer-Integrated Manufacturing 29 (2013) 2, p.417–423.
DOI: 10.1016/j.rcim.2012.09.011
Google Scholar
[24]
D. Ding, Z. Pan, D. Cuiuri, H. Li, A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM), Robotics and Computer-Integrated Manufacturing 31 (2015), p.101–110.
DOI: 10.1016/j.rcim.2014.08.008
Google Scholar
[25]
S. Suryakumar, K.P. Karunakaran, A. Bernard, U. Chandrasekhar, N. Raghavender, D. Sharma, Weld bead modeling and process optimization in Hybrid Layered Manufacturing, Computer-Aided Design 43 (2011) 4, p.331–344.
DOI: 10.1016/j.cad.2011.01.006
Google Scholar
[26]
A. Zapata, C. Bernauer, M. Hell, M.F. Zaeh, Studies on the direction-independent temperature measurement of a coaxial laser metal deposition process with wire, Lasers in Manufacturing Conference 2021 (2021).
DOI: 10.1016/j.procir.2022.08.027
Google Scholar
[27]
N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing 8 (2015), p.12–35.
DOI: 10.1016/j.addma.2015.07.002
Google Scholar
[28]
T. Hua, C. Jing, L. Xin, Z. Fengying, H. Weidong, Research on molten pool temperature in the process of laser rapid forming, Journal of Materials Processing Technology 198 (2008) 1-3, p.454–462.
DOI: 10.1016/j.jmatprotec.2007.06.090
Google Scholar
[29]
H. Wang, W. Liu, Z. Tang, Y. Wang, X. Mei, K.M. Saleheen, Z. Wang, H. Zhang, Review on adaptive control of laser-directed energy deposition, Opt. Eng. 59 (2020) 07, p.1.
DOI: 10.1117/1.oe.59.7.070901
Google Scholar
[30]
S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, A.T. Clare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Materials & Design 95 (2016), p.431–445.
DOI: 10.1016/j.matdes.2016.01.099
Google Scholar
[31]
L. Song, J. Mazumder, Feedback Control of Melt Pool Temperature During Laser Cladding Process, IEEE Trans. Contr. Syst. Technol. 19 (2011) 6, p.1349–1356.
DOI: 10.1109/tcst.2010.2093901
Google Scholar
[32]
G. Bi, A. Gasser, K. Wissenbach, A. Drenker, R. Poprawe, Characterization of the process control for the direct laser metallic powder deposition, Surface and Coatings Technology 201 (2006) 6, p.2676–2683.
DOI: 10.1016/j.surfcoat.2006.05.006
Google Scholar
[33]
L. Tang, R.G. Landers, Melt Pool Temperature Control for Laser Metal Deposition Processes—Part I: Online Temperature Control, Journal of Manufacturing Science and Engineering 132 (2010) 1.
DOI: 10.1115/1.4000882
Google Scholar
[34]
B.T. Gibson, Y.K. Bandari, B.S. Richardson, W.C. Henry, E.J. Vetland, T.W. Sundermann, L.J. Love, Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V, Additive Manufacturing 32 (2020), p.100993.
DOI: 10.1016/j.addma.2019.100993
Google Scholar
[35]
D. Tyralla, T. Seefeld, Temperature field based closed-loop control of laser hot wire cladding for low dilution, Procedia CIRP 94 (2020), p.451–455.
DOI: 10.1016/j.procir.2020.09.163
Google Scholar
[36]
M. Akbari, R. Kovacevic, Closed loop control of melt pool width in robotized laser powder–directed energy deposition process, Int J Adv Manuf Technol 104 (2019) 5-8, p.2887–2898.
DOI: 10.1007/s00170-019-04195-y
Google Scholar
[37]
A. Heralić, Monitoring and control of robotized laser metal-wire deposition. Zugl.: Göteborg, Univ., Diss., 2012, Chalmers Univ. of Technology, Göteborg, 2012. ISBN: 978-91-7385-655-3.
Google Scholar
[38]
I. Garmendia, J. Pujana, A. Lamikiz, J. Flores, M. Madarieta, Development of an Intra-Layer Adaptive Toolpath Generation Control Procedure in the Laser Metal Wire Deposition Process, Materials (Basel, Switzerland) 12 (2019) 3.
DOI: 10.3390/ma12030352
Google Scholar
[39]
M. Buhr, J. Weber, J.-P. Wenzl, M. Möller, C. Emmelmann, Influences of process conditions on stability of sensor controlled robot-based laser metal deposition, Procedia CIRP 74 (2018), p.149–153.
DOI: 10.1016/j.procir.2018.08.067
Google Scholar
[40]
L. Song, V. Bagavath-Singh, B. Dutta, J. Mazumder, Control of melt pool temperature and deposition height during direct metal deposition process, Int J Adv Manuf Technol 58 (2012) 1-4, p.247–256.
DOI: 10.1007/s00170-011-3395-2
Google Scholar
[41]
J. Flores, I. Garmendia, Cabanes Axpe, Thermal Monitoring and Control by Infrared Camera in the Manufacture of Parts with Laser Metal Deposition, DYNAII 95 (2020) 1, p.360–364.
DOI: 10.6036/9379
Google Scholar
[42]
A. Fathi, A. Khajepour, E. Toyserkani, M. Durali, Clad height control in laser solid freeform fabrication using a feedforward PID controller, Int J Adv Manuf Technol 35 (2007) 3-4, p.280–292.
DOI: 10.1007/s00170-006-0721-1
Google Scholar
[43]
Q. Wang, J. Li, M. Gouge, A.R. Nassar, P. Michaleris, E.W. Reutzel, Physics-Based Multivariable Modeling and Feedback Linearization Control of Melt-Pool Geometry and Temperature in Directed Energy Deposition, Journal of Manufacturing Science and Engineering 139 (2017) 2.
DOI: 10.1115/1.4034304
Google Scholar
[44]
C. Stadter, M. Schmoeller, M. Zeitler, V. Tueretkan, U. Munzert, M.F. Zaeh, Process control and quality assurance in remote laser beam welding by optical coherence tomography, Journal of Laser Applications 31 (2019) 2, p.22408.
DOI: 10.2351/1.5096103
Google Scholar
[45]
M. Schmoeller, C. Stadter, S. Liebl, M.F. Zaeh, Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography, Journal of Laser Applications 31 (2019) 2, p.22409.
DOI: 10.2351/1.5096104
Google Scholar
[46]
M. Kogel-Hollacher, M. Strebel, C. Staudenmaier, H.-I. Schneider, D. Regulin, OCT sensor for layer height control in DED using SINUMERIK® controller, in: H. Helvajian, B. Gu, H. Chen (Eds.), Laser 3D Manufacturing VII, SPIE, 2020 - 2020, 112710O-1 - 112710O-5. ISBN: 9781510633056.
DOI: 10.1117/12.2540167
Google Scholar