Material Characterization of Hybrid Components Manufactured by Laser-Based Directed Energy Deposition on Sheet Metal Substrates

Article Preview

Abstract:

Laser-based directed energy deposition (DED-LB/M) allows the application of a wear-resistant metal coating to the surface of a sheet metal substrate. Subsequent deep drawing of the part enables high material efficiency, significantly shorter production times, and lower unit costs compared to, for example, solely machined production of the entire component. At the same time, energy-intensive global heat treatment strategies can be avoided. For the numerical analysis of such hybrid process chains, both the sheet metal substrate and the additively applied coating are usually characterized individually. However, the low thickness of the coating in combination with a relatively high welding depth, which is required for a good bond to the sheet metal substrate during subsequent forming, lead to a strong gradient of the mechanical properties as well as complex mechanical interactions in the bonding zone. Therefore, appropriate characterization methods are required. In this work, an investigation of different influencing factors, like the rolling, hatch and tensile direction, is carried out with the aid of tensile tests using hybrid specimens. In this way, interactions between the influencing factors are identified. As substrate, 3.5 mm thick 16MnCr5 blanks are used, with an approximately 0.68 mm thick coating of Bainidur® AM. In addition, an optical surface roughness measurement and metallographic analysis of the tensile specimen’s edge area after laser cutting is performed.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Friedrich, H. E.: Leichtbau in der Fahrzeugtechnik. Wiesbaden: Springer Fachmedien Wiesbaden (2017).

Google Scholar

[2] Merklein, M.; Junker, D.; Schaub, A. et al.: Hybrid Additive Manufacturing Technologies – An Analysis Regarding Potentials and Applications. Physics Procedia 83 (2016) 1-3, S. 549–559.

DOI: 10.1016/j.phpro.2016.08.057

Google Scholar

[3] Pragana, J.P.M.; Sampaio, R.F.V.; Bragança, I.M.F. et al.: Hybrid metal additive manufacturing: A state–of–the-art review. Advances in Industrial and Manufacturing Engineering 2 (2021) 5, S. 100032.

DOI: 10.1016/j.aime.2021.100032

Google Scholar

[4] Gibson, I.; Rosen, D.; Stucker, B. (Edit.): Additive manufacturing technologies. 3D printing, rapid prototyping, and direct digital manufacturing. New York, NY: Springer (2015).

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[5] Betts, J. C.; Mordike, B. L.; Grech, M.: Characterisation, wear and corrosion testing of laser-deposited AISI 316 reinforced with ceramic particles. Surface Engineering 26 (2010) 1-2, S. 21–29.

DOI: 10.1179/174329409x433920

Google Scholar

[6] Hentschel, O.; Siegel, L.; Scheitler, C. et al.: Processing of AISI H11 Tool Steel Powder Modified with Carbon Black Nanoparticles for the Additive Manufacturing of Forging Tools with Tailored Mechanical Properties by Means of Laser Metal Deposition (LMD). Metals 8 (2018) 9, S. 659.

DOI: 10.3390/met8090659

Google Scholar

[7] Ünsal, I.; Hama-Saleh, R.; Sviridov, A. et al.: Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing. PROCEEDINGS OF THE 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2018, Palermo, Italy, 2018, S. 160028.

DOI: 10.1063/1.5035054

Google Scholar

[8] Hama-Saleh, R.; Weisheit, A.; Schleifenbaum, J. H. et al.: Formability Analysis of Micro-Alloyed Sheet Metals Reinforced by Additive Manufacturing. Procedia Manufacturing 47 (2020) 2, S. 1023–1028.

DOI: 10.1016/j.promfg.2020.04.317

Google Scholar

[9] Niederhauser, S.; Karlsson, B.: Mechanical properties of laser cladded steel. Materials Science and Technology 19 (2003) 11, S. 1611–1616.

DOI: 10.1179/026708303225008103

Google Scholar

[10] Cui, W. H.; Wang, H.; Shao, D. Q. et al.: Analysis of Influencing Factors and Experimental Study on Properties of Laser Cladding Layer. IOP Conference Series: Materials Science and Engineering 631 (2019) 3, S. 32016.

DOI: 10.1088/1757-899x/631/3/032016

Google Scholar

[11] Lachmayer, R.; Rettschlag, K.; Kaierle, S. (Hrsg.): Konstruktion für die Additive Fertigung 2020. Berlin: Springer Vieweg (2021).

DOI: 10.1007/978-3-662-63030-3

Google Scholar

[12] Bartels, D.; Hentschel, O.; Dauer, J. et al.: Processing of low-alloyed case-hardening steel Bainidur AM by means of DED-LB/M. Lasers in Manufacturing Conference (2021).

Google Scholar

[13] DIN EN ISO 6892-1:2020-06, Metallische Werkstoffe_- Zugversuch_- Teil_1: Prüfverfahren bei Raumtemperatur (ISO_6892-1:2019); Deutsche Fassung EN_ISO_6892-1:(2019).

DOI: 10.31030/3132591

Google Scholar

[14] DIN EN ISO 25178-1:2016-12, Geometrische Produktspezifikation_(GPS)_- Oberflächenbeschaffenheit: Flächenhaft_- Teil_1: Angabe von Oberflächenbeschaffenheit (ISO_25178-1:2016); Deutsche Fassung EN_ISO_25178-1:(2016).

DOI: 10.31030/2324720

Google Scholar

[15] Hall, W.; Javanbakht, Z. (Edit.): Design and Manufacture of Fibre-Reinforced Composites. Cham: Springer International Publishing; Springer (2021).

Google Scholar