Study of Bonding Mechanisms in Cold Spray of Metal-to-Polymer through a Numerical Approach

Article Preview

Abstract:

Cold spray (CS) is a low-temperature process that can be used for the metallization of temperature-sensitive materials, such as polymers or polymer matrix composites, so coupling the lightweight of polymers with the wear resistance, physical properties and hardness of metals. The study of the cold spray of metal particles applied to polymers is still in its early stage and the deposition mechanisms underlying the process are not thoroughly understood yet. Moreover, numerical studies of cold spray of metal-to-polymer are almost completely absent in literature. Therefore, aiming to fulfill this gap of knowledge, the scope of this work is to develop a numerical FE model capable of predicting the impact and the adhesion of a micron size metallic particle onto a polymeric substrate. The results from the model were compared with the experimental outcomes found in literature to establish the effectiveness of the model that was used as a powerful tool to better understand the bonding mechanisms and all the related phenomena ruling the CS process of metal-to-polymer.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A. PAPYRIN, The development of the cold spray process, in: Cold Spray Mater. Depos. Process, Elsevier, 2007: p.11–42.

DOI: 10.1533/9781845693787.1.11

Google Scholar

[2] M. Jeandin, G. Rolland, L.L. Descurninges, M.H. Berger, Which powders for cold spray?, Surf. Eng. 30 (2014) 291–298.

DOI: 10.1179/1743294414y.0000000253

Google Scholar

[3] R. Lupoi, Current design and performance of cold spray nozzles: experimental and numerical observations on deposition efficiency and particle velocity, Surf. Eng. 30 (2014) 316–322.

DOI: 10.1179/1743294413y.0000000214

Google Scholar

[4] R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol. 8 (1999) 559–564.

DOI: 10.1361/105996399770350250

Google Scholar

[5] S. Kuroda, J. Kawakita, M. Watanabe, H. Katanoda, Warm spraying—a novel coating process based on high-velocity impact of solid particles, Sci. Technol. Adv. Mater. 9 (2008) 033002.

DOI: 10.1088/1468-6996/9/3/033002

Google Scholar

[6] C.A. Widener, M. Ellingsen, M. Carter, Understanding Cold Spray for Enhanced Manufacturing Sustainability, Mater. Sci. Forum 941 (2018) 1867–1873.

DOI: 10.4028/www.scientific.net/msf.941.1867

Google Scholar

[7] M.R. Rokni, P. Feng, C.A. Widener, S.R. Nutt, Depositing Al-Based Metallic Coatings onto Polymer Substrates by Cold Spray, J. Therm. Spray Technol. 28 (2019) 1699–1708.

DOI: 10.1007/s11666-019-00911-y

Google Scholar

[8] C. Chen, X. Xie, Y. Xie, X. Yan, C. Huang, S. Deng, Z. Ren, H. Liao, Metallization of polyether ether ketone (PEEK) by copper coating via cold spray, Surf. Coatings Technol. 342 (2018) 209–219.

DOI: 10.1016/j.surfcoat.2018.02.087

Google Scholar

[9] F. Rubino, F. Tucci, V. Esperto, A.S. Perna, A. Astarita, P. Carlone, A. Squillace, Metallization of Fiber Reinforced Composite by Surface Functionalization and Cold Spray Deposition, Procedia Manuf. 47 (2020) 1084–1088.

DOI: 10.1016/j.promfg.2020.04.353

Google Scholar

[10] A. Viscusi, Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes, in: AIP Conf. Proc., American Institute of Physics Inc., 2018: p.100017.

DOI: 10.1063/1.5034957

Google Scholar

[11] A. Viscusi, A. Astarita, L. Carrino, G. D'Avino, C. de Nicola, P.L. Maffettone, G.P. Reina, S. Russo, A. Squillace, Experimental study and numerical investigation of the phenomena occurring during long duration cold spray deposition, Int. Rev. Model. Simulations 11 (2018) 84–92.

DOI: 10.15866/iremos.v11i2.13619

Google Scholar

[12] H. Parmar, F. Tucci, P. Carlone, T.S. Sudarshan, Metallisation of polymers and polymer matrix composites by cold spray: state of the art and research perspectives, Int. Mater. Rev. (2021).

DOI: 10.1080/09506608.2021.1954805

Google Scholar

[13] F. Rubino, P. Poza, G. Pasquino, P. Carlone, Thermal Spray Processes in Concentrating Solar Power Technology, Met. 2021, Vol. 11, Page 1377 11 (2021) 1377.

DOI: 10.3390/met11091377

Google Scholar

[14] R. Della Gatta, A.S. Perna, A. Viscusi, G. Pasquino, A. Astarita, Cold spray deposition of metallic coatings on polymers: a review, J. Mater. Sci. (2021).

DOI: 10.1007/s10853-021-06561-2

Google Scholar

[15] A. Ganesan, M. Yamada, M. Fukumoto, Cold Spray Coating Deposition Mechanism on the Thermoplastic and Thermosetting Polymer Substrates, J. Therm. Spray Technol. 22 (2013) 1275–1282.

DOI: 10.1007/s11666-013-9984-x

Google Scholar

[16] A.A. Tiamiyu, C.A. Schuh, Particle flattening during cold spray: Mechanistic regimes revealed by single particle impact tests, Surf. Coatings Technol. 403 (2020) 126386.

DOI: 10.1016/j.surfcoat.2020.126386

Google Scholar

[17] W.Y. Li, D.D. Zhang, C.J. Huang, S. Yin, M. Yu, F.F. Wang, H.L. Liao, Modelling of impact behaviour of cold spray particles: review, Surf. Eng. 30 (2014) 299–308.

DOI: 10.1179/1743294414y.0000000268

Google Scholar

[18] S. Yin, X. Wang, W. Li, B. Xu, Numerical Investigation on Effects of Interactions Between Particles on Coating Formation in Cold Spraying, J. Therm. Spray Technol. 18 (2009) 686–693.

DOI: 10.1007/s11666-009-9390-6

Google Scholar

[19] J.T. Tsai, S. Akin, F. Zhou, D.F. Bahr, M.B.G. Jun, Establishing a Cold Spray Particle Deposition Window on Polymer Substrate, J. Therm. Spray Technol. 30 (2021) 1069–1080.

DOI: 10.1007/s11666-021-01179-x

Google Scholar

[20] A. Heydari Astaraee, C. Colombo, S. Bagherifard, Numerical Modeling of Bond Formation in Polymer Surface Metallization Using Cold Spray, J. Therm. Spray Technol. (2021) 1–12.

DOI: 10.1007/s11666-021-01224-9

Google Scholar

[21] H. Che, X. Chu, P. Vo, S. Yue, Metallization of Various Polymers by Cold Spray, J. Therm. Spray Technol. 27 (2018) 169–178.

DOI: 10.1007/s11666-017-0663-1

Google Scholar

[22] H. Che, P. Vo, S. Yue, Investigation of Cold Spray on Polymers by Single Particle Impact Experiments, J. Therm. Spray Technol. 28 (2019) 135–143.

DOI: 10.1007/s11666-018-0801-4

Google Scholar

[23] A. Fardan, C.C. Berndt, R. Ahmed, Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review, Surf. Coatings Technol. 409 (2021) 126835.

DOI: 10.1016/j.surfcoat.2021.126835

Google Scholar

[24] L. Boccarusso, G. Arleo, A. Astarita, F. Bernardo, P. De Fazio, M. Durante, F. Memola Capece Minutolo, R. Sepe, A. Squillace, A new approach to study the influence of the weld bead morphology on the fatigue behaviour of Ti–6Al–4V laser beam-welded butt joints, Int. J. Adv. Manuf. Technol. 88 (2017) 75–88.

DOI: 10.1007/s00170-016-8764-4

Google Scholar

[25] A. Formisano, L. Carrino, D. De Fazio, M. Durante, A. Viscusi, Enhanced Aluminium Foam Based Cylindrical Sandwiches: Bending Behaviour and Numerical Modeling, Int. Rev. Model. Simulations 11 (2018) 198–205.

DOI: 10.15866/iremos.v11i4.15631

Google Scholar

[26] H. Unal, A. Mimaroglu, Friction and Wear Characteristics of PEEK and its Composite under Water Lubrication, J. Reinf. Plast. Compos. 25 (2006) 1659–1667.

DOI: 10.1177/0731684406068406

Google Scholar

[27] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31–48.

DOI: 10.1016/0013-7944(85)90052-9

Google Scholar

[28] D. Garcia-Gonzalez, A. Rusinek, T. Jankowiak, A. Arias, Mechanical impact behavior of polyether–ether–ketone (PEEK), Compos. Struct. 124 (2015) 88–99.

DOI: 10.1016/j.compstruct.2014.12.061

Google Scholar

[29] Q. Wang, X. Luo, S. Tsutsumi, T. Sasaki, C. Li, N. Ma, Measurement and analysis of cold spray residual stress using arbitrary Lagrangian–Eulerian method, Addit. Manuf. 35 (2020) 101296.

DOI: 10.1016/j.addma.2020.101296

Google Scholar

[30] D. Barba, A. Arias, D. Garcia-Gonzalez, Temperature and strain rate dependences on hardening and softening behaviours in semi-crystalline polymers: Application to PEEK, Int. J. Solids Struct. 182–183 (2020) 205–217.

DOI: 10.1016/j.ijsolstr.2019.08.021

Google Scholar

[31] R.N. Raoelison, L. Lalu Koithara, S. Costil, Cold spray coating of PEEK surface by copper deposition: Interfacial adhesion at high deposition efficiency and bonding strength, CIRP J. Manuf. Sci. Technol. 35 (2021) 63–68.

DOI: 10.1016/j.cirpj.2021.05.008

Google Scholar

[32] R. Della Gatta, A. Viscusi, A.S. Perna, A. Caraviello, A. Astarita, Cold spray process for the production of AlSi10Mg coatings on glass fibers reinforced polymers, Mater. Manuf. Process. 36 (2021) 106–121.

DOI: 10.1080/10426914.2020.1813895

Google Scholar