[1]
A. PAPYRIN, The development of the cold spray process, in: Cold Spray Mater. Depos. Process, Elsevier, 2007: p.11–42.
DOI: 10.1533/9781845693787.1.11
Google Scholar
[2]
M. Jeandin, G. Rolland, L.L. Descurninges, M.H. Berger, Which powders for cold spray?, Surf. Eng. 30 (2014) 291–298.
DOI: 10.1179/1743294414y.0000000253
Google Scholar
[3]
R. Lupoi, Current design and performance of cold spray nozzles: experimental and numerical observations on deposition efficiency and particle velocity, Surf. Eng. 30 (2014) 316–322.
DOI: 10.1179/1743294413y.0000000214
Google Scholar
[4]
R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol. 8 (1999) 559–564.
DOI: 10.1361/105996399770350250
Google Scholar
[5]
S. Kuroda, J. Kawakita, M. Watanabe, H. Katanoda, Warm spraying—a novel coating process based on high-velocity impact of solid particles, Sci. Technol. Adv. Mater. 9 (2008) 033002.
DOI: 10.1088/1468-6996/9/3/033002
Google Scholar
[6]
C.A. Widener, M. Ellingsen, M. Carter, Understanding Cold Spray for Enhanced Manufacturing Sustainability, Mater. Sci. Forum 941 (2018) 1867–1873.
DOI: 10.4028/www.scientific.net/msf.941.1867
Google Scholar
[7]
M.R. Rokni, P. Feng, C.A. Widener, S.R. Nutt, Depositing Al-Based Metallic Coatings onto Polymer Substrates by Cold Spray, J. Therm. Spray Technol. 28 (2019) 1699–1708.
DOI: 10.1007/s11666-019-00911-y
Google Scholar
[8]
C. Chen, X. Xie, Y. Xie, X. Yan, C. Huang, S. Deng, Z. Ren, H. Liao, Metallization of polyether ether ketone (PEEK) by copper coating via cold spray, Surf. Coatings Technol. 342 (2018) 209–219.
DOI: 10.1016/j.surfcoat.2018.02.087
Google Scholar
[9]
F. Rubino, F. Tucci, V. Esperto, A.S. Perna, A. Astarita, P. Carlone, A. Squillace, Metallization of Fiber Reinforced Composite by Surface Functionalization and Cold Spray Deposition, Procedia Manuf. 47 (2020) 1084–1088.
DOI: 10.1016/j.promfg.2020.04.353
Google Scholar
[10]
A. Viscusi, Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes, in: AIP Conf. Proc., American Institute of Physics Inc., 2018: p.100017.
DOI: 10.1063/1.5034957
Google Scholar
[11]
A. Viscusi, A. Astarita, L. Carrino, G. D'Avino, C. de Nicola, P.L. Maffettone, G.P. Reina, S. Russo, A. Squillace, Experimental study and numerical investigation of the phenomena occurring during long duration cold spray deposition, Int. Rev. Model. Simulations 11 (2018) 84–92.
DOI: 10.15866/iremos.v11i2.13619
Google Scholar
[12]
H. Parmar, F. Tucci, P. Carlone, T.S. Sudarshan, Metallisation of polymers and polymer matrix composites by cold spray: state of the art and research perspectives, Int. Mater. Rev. (2021).
DOI: 10.1080/09506608.2021.1954805
Google Scholar
[13]
F. Rubino, P. Poza, G. Pasquino, P. Carlone, Thermal Spray Processes in Concentrating Solar Power Technology, Met. 2021, Vol. 11, Page 1377 11 (2021) 1377.
DOI: 10.3390/met11091377
Google Scholar
[14]
R. Della Gatta, A.S. Perna, A. Viscusi, G. Pasquino, A. Astarita, Cold spray deposition of metallic coatings on polymers: a review, J. Mater. Sci. (2021).
DOI: 10.1007/s10853-021-06561-2
Google Scholar
[15]
A. Ganesan, M. Yamada, M. Fukumoto, Cold Spray Coating Deposition Mechanism on the Thermoplastic and Thermosetting Polymer Substrates, J. Therm. Spray Technol. 22 (2013) 1275–1282.
DOI: 10.1007/s11666-013-9984-x
Google Scholar
[16]
A.A. Tiamiyu, C.A. Schuh, Particle flattening during cold spray: Mechanistic regimes revealed by single particle impact tests, Surf. Coatings Technol. 403 (2020) 126386.
DOI: 10.1016/j.surfcoat.2020.126386
Google Scholar
[17]
W.Y. Li, D.D. Zhang, C.J. Huang, S. Yin, M. Yu, F.F. Wang, H.L. Liao, Modelling of impact behaviour of cold spray particles: review, Surf. Eng. 30 (2014) 299–308.
DOI: 10.1179/1743294414y.0000000268
Google Scholar
[18]
S. Yin, X. Wang, W. Li, B. Xu, Numerical Investigation on Effects of Interactions Between Particles on Coating Formation in Cold Spraying, J. Therm. Spray Technol. 18 (2009) 686–693.
DOI: 10.1007/s11666-009-9390-6
Google Scholar
[19]
J.T. Tsai, S. Akin, F. Zhou, D.F. Bahr, M.B.G. Jun, Establishing a Cold Spray Particle Deposition Window on Polymer Substrate, J. Therm. Spray Technol. 30 (2021) 1069–1080.
DOI: 10.1007/s11666-021-01179-x
Google Scholar
[20]
A. Heydari Astaraee, C. Colombo, S. Bagherifard, Numerical Modeling of Bond Formation in Polymer Surface Metallization Using Cold Spray, J. Therm. Spray Technol. (2021) 1–12.
DOI: 10.1007/s11666-021-01224-9
Google Scholar
[21]
H. Che, X. Chu, P. Vo, S. Yue, Metallization of Various Polymers by Cold Spray, J. Therm. Spray Technol. 27 (2018) 169–178.
DOI: 10.1007/s11666-017-0663-1
Google Scholar
[22]
H. Che, P. Vo, S. Yue, Investigation of Cold Spray on Polymers by Single Particle Impact Experiments, J. Therm. Spray Technol. 28 (2019) 135–143.
DOI: 10.1007/s11666-018-0801-4
Google Scholar
[23]
A. Fardan, C.C. Berndt, R. Ahmed, Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review, Surf. Coatings Technol. 409 (2021) 126835.
DOI: 10.1016/j.surfcoat.2021.126835
Google Scholar
[24]
L. Boccarusso, G. Arleo, A. Astarita, F. Bernardo, P. De Fazio, M. Durante, F. Memola Capece Minutolo, R. Sepe, A. Squillace, A new approach to study the influence of the weld bead morphology on the fatigue behaviour of Ti–6Al–4V laser beam-welded butt joints, Int. J. Adv. Manuf. Technol. 88 (2017) 75–88.
DOI: 10.1007/s00170-016-8764-4
Google Scholar
[25]
A. Formisano, L. Carrino, D. De Fazio, M. Durante, A. Viscusi, Enhanced Aluminium Foam Based Cylindrical Sandwiches: Bending Behaviour and Numerical Modeling, Int. Rev. Model. Simulations 11 (2018) 198–205.
DOI: 10.15866/iremos.v11i4.15631
Google Scholar
[26]
H. Unal, A. Mimaroglu, Friction and Wear Characteristics of PEEK and its Composite under Water Lubrication, J. Reinf. Plast. Compos. 25 (2006) 1659–1667.
DOI: 10.1177/0731684406068406
Google Scholar
[27]
G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31–48.
DOI: 10.1016/0013-7944(85)90052-9
Google Scholar
[28]
D. Garcia-Gonzalez, A. Rusinek, T. Jankowiak, A. Arias, Mechanical impact behavior of polyether–ether–ketone (PEEK), Compos. Struct. 124 (2015) 88–99.
DOI: 10.1016/j.compstruct.2014.12.061
Google Scholar
[29]
Q. Wang, X. Luo, S. Tsutsumi, T. Sasaki, C. Li, N. Ma, Measurement and analysis of cold spray residual stress using arbitrary Lagrangian–Eulerian method, Addit. Manuf. 35 (2020) 101296.
DOI: 10.1016/j.addma.2020.101296
Google Scholar
[30]
D. Barba, A. Arias, D. Garcia-Gonzalez, Temperature and strain rate dependences on hardening and softening behaviours in semi-crystalline polymers: Application to PEEK, Int. J. Solids Struct. 182–183 (2020) 205–217.
DOI: 10.1016/j.ijsolstr.2019.08.021
Google Scholar
[31]
R.N. Raoelison, L. Lalu Koithara, S. Costil, Cold spray coating of PEEK surface by copper deposition: Interfacial adhesion at high deposition efficiency and bonding strength, CIRP J. Manuf. Sci. Technol. 35 (2021) 63–68.
DOI: 10.1016/j.cirpj.2021.05.008
Google Scholar
[32]
R. Della Gatta, A. Viscusi, A.S. Perna, A. Caraviello, A. Astarita, Cold spray process for the production of AlSi10Mg coatings on glass fibers reinforced polymers, Mater. Manuf. Process. 36 (2021) 106–121.
DOI: 10.1080/10426914.2020.1813895
Google Scholar